| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r1elssi | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  𝐵  ⊆  ∪  ( 𝑅1  “  On ) ) | 
						
							| 2 | 1 | sseld | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝐴  ∈  𝐵  →  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) ) | 
						
							| 3 |  | rankidn | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ¬  𝐴  ∈  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 4 | 2 3 | syl6 | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝐴  ∈  𝐵  →  ¬  𝐴  ∈  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | 
						
							| 5 | 4 | imp | ⊢ ( ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ∈  𝐵 )  →  ¬  𝐴  ∈  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 6 |  | rankon | ⊢ ( rank ‘ 𝐵 )  ∈  On | 
						
							| 7 |  | rankon | ⊢ ( rank ‘ 𝐴 )  ∈  On | 
						
							| 8 |  | ontri1 | ⊢ ( ( ( rank ‘ 𝐵 )  ∈  On  ∧  ( rank ‘ 𝐴 )  ∈  On )  →  ( ( rank ‘ 𝐵 )  ⊆  ( rank ‘ 𝐴 )  ↔  ¬  ( rank ‘ 𝐴 )  ∈  ( rank ‘ 𝐵 ) ) ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( ( rank ‘ 𝐵 )  ⊆  ( rank ‘ 𝐴 )  ↔  ¬  ( rank ‘ 𝐴 )  ∈  ( rank ‘ 𝐵 ) ) | 
						
							| 10 |  | rankdmr1 | ⊢ ( rank ‘ 𝐵 )  ∈  dom  𝑅1 | 
						
							| 11 |  | rankdmr1 | ⊢ ( rank ‘ 𝐴 )  ∈  dom  𝑅1 | 
						
							| 12 |  | r1ord3g | ⊢ ( ( ( rank ‘ 𝐵 )  ∈  dom  𝑅1  ∧  ( rank ‘ 𝐴 )  ∈  dom  𝑅1 )  →  ( ( rank ‘ 𝐵 )  ⊆  ( rank ‘ 𝐴 )  →  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) )  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | 
						
							| 13 | 10 11 12 | mp2an | ⊢ ( ( rank ‘ 𝐵 )  ⊆  ( rank ‘ 𝐴 )  →  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) )  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 14 |  | r1rankidb | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  𝐵  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) | 
						
							| 15 | 14 | sselda | ⊢ ( ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ∈  𝐵 )  →  𝐴  ∈  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) | 
						
							| 16 |  | ssel | ⊢ ( ( 𝑅1 ‘ ( rank ‘ 𝐵 ) )  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) )  →  ( 𝐴  ∈  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) )  →  𝐴  ∈  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | 
						
							| 17 | 13 15 16 | syl2imc | ⊢ ( ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ∈  𝐵 )  →  ( ( rank ‘ 𝐵 )  ⊆  ( rank ‘ 𝐴 )  →  𝐴  ∈  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | 
						
							| 18 | 9 17 | biimtrrid | ⊢ ( ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ∈  𝐵 )  →  ( ¬  ( rank ‘ 𝐴 )  ∈  ( rank ‘ 𝐵 )  →  𝐴  ∈  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | 
						
							| 19 | 5 18 | mt3d | ⊢ ( ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ∈  𝐵 )  →  ( rank ‘ 𝐴 )  ∈  ( rank ‘ 𝐵 ) ) | 
						
							| 20 | 19 | ex | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝐴  ∈  𝐵  →  ( rank ‘ 𝐴 )  ∈  ( rank ‘ 𝐵 ) ) ) |