Step |
Hyp |
Ref |
Expression |
1 |
|
r1elssi |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → 𝐵 ⊆ ∪ ( 𝑅1 “ On ) ) |
2 |
1
|
sseld |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ) |
3 |
|
rankidn |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
4 |
2 3
|
syl6 |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
5 |
4
|
imp |
⊢ ( ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ 𝐵 ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
6 |
|
rankon |
⊢ ( rank ‘ 𝐵 ) ∈ On |
7 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
8 |
|
ontri1 |
⊢ ( ( ( rank ‘ 𝐵 ) ∈ On ∧ ( rank ‘ 𝐴 ) ∈ On ) → ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) ) |
9 |
6 7 8
|
mp2an |
⊢ ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) |
10 |
|
rankdmr1 |
⊢ ( rank ‘ 𝐵 ) ∈ dom 𝑅1 |
11 |
|
rankdmr1 |
⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 |
12 |
|
r1ord3g |
⊢ ( ( ( rank ‘ 𝐵 ) ∈ dom 𝑅1 ∧ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) → ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
13 |
10 11 12
|
mp2an |
⊢ ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) → ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
14 |
|
r1rankidb |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → 𝐵 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) |
15 |
14
|
sselda |
⊢ ( ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) |
16 |
|
ssel |
⊢ ( ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
17 |
13 15 16
|
syl2imc |
⊢ ( ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ 𝐵 ) → ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐴 ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
18 |
9 17
|
syl5bir |
⊢ ( ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ 𝐵 ) → ( ¬ ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
19 |
5 18
|
mt3d |
⊢ ( ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) |
20 |
19
|
ex |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ∈ 𝐵 → ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐵 ) ) ) |