| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankelun.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
rankelun.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
rankelun.3 |
⊢ 𝐶 ∈ V |
| 4 |
|
rankelun.4 |
⊢ 𝐷 ∈ V |
| 5 |
1 2 3 4
|
rankelpr |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐶 ) ∧ ( rank ‘ 𝐵 ) ∈ ( rank ‘ 𝐷 ) ) → ( rank ‘ { 𝐴 , 𝐵 } ) ∈ ( rank ‘ { 𝐶 , 𝐷 } ) ) |
| 6 |
|
rankon |
⊢ ( rank ‘ { 𝐶 , 𝐷 } ) ∈ On |
| 7 |
6
|
onordi |
⊢ Ord ( rank ‘ { 𝐶 , 𝐷 } ) |
| 8 |
|
ordsucelsuc |
⊢ ( Ord ( rank ‘ { 𝐶 , 𝐷 } ) → ( ( rank ‘ { 𝐴 , 𝐵 } ) ∈ ( rank ‘ { 𝐶 , 𝐷 } ) ↔ suc ( rank ‘ { 𝐴 , 𝐵 } ) ∈ suc ( rank ‘ { 𝐶 , 𝐷 } ) ) ) |
| 9 |
7 8
|
ax-mp |
⊢ ( ( rank ‘ { 𝐴 , 𝐵 } ) ∈ ( rank ‘ { 𝐶 , 𝐷 } ) ↔ suc ( rank ‘ { 𝐴 , 𝐵 } ) ∈ suc ( rank ‘ { 𝐶 , 𝐷 } ) ) |
| 10 |
5 9
|
sylib |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐶 ) ∧ ( rank ‘ 𝐵 ) ∈ ( rank ‘ 𝐷 ) ) → suc ( rank ‘ { 𝐴 , 𝐵 } ) ∈ suc ( rank ‘ { 𝐶 , 𝐷 } ) ) |
| 11 |
1 2
|
rankop |
⊢ ( rank ‘ 〈 𝐴 , 𝐵 〉 ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
| 12 |
1 2
|
rankpr |
⊢ ( rank ‘ { 𝐴 , 𝐵 } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
| 13 |
|
suceq |
⊢ ( ( rank ‘ { 𝐴 , 𝐵 } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → suc ( rank ‘ { 𝐴 , 𝐵 } ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
| 14 |
12 13
|
ax-mp |
⊢ suc ( rank ‘ { 𝐴 , 𝐵 } ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
| 15 |
11 14
|
eqtr4i |
⊢ ( rank ‘ 〈 𝐴 , 𝐵 〉 ) = suc ( rank ‘ { 𝐴 , 𝐵 } ) |
| 16 |
3 4
|
rankop |
⊢ ( rank ‘ 〈 𝐶 , 𝐷 〉 ) = suc suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) |
| 17 |
3 4
|
rankpr |
⊢ ( rank ‘ { 𝐶 , 𝐷 } ) = suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) |
| 18 |
|
suceq |
⊢ ( ( rank ‘ { 𝐶 , 𝐷 } ) = suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) → suc ( rank ‘ { 𝐶 , 𝐷 } ) = suc suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) ) |
| 19 |
17 18
|
ax-mp |
⊢ suc ( rank ‘ { 𝐶 , 𝐷 } ) = suc suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) |
| 20 |
16 19
|
eqtr4i |
⊢ ( rank ‘ 〈 𝐶 , 𝐷 〉 ) = suc ( rank ‘ { 𝐶 , 𝐷 } ) |
| 21 |
10 15 20
|
3eltr4g |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐶 ) ∧ ( rank ‘ 𝐵 ) ∈ ( rank ‘ 𝐷 ) ) → ( rank ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( rank ‘ 〈 𝐶 , 𝐷 〉 ) ) |