Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . (Contributed by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rankidn | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 ) | |
2 | rankr1c | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) ) | |
3 | 1 2 | mpbii | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) |
4 | 3 | simpld | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |