Metamath Proof Explorer


Theorem rankidn

Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankidn ( 𝐴 ( 𝑅1 “ On ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 )
2 rankr1c ( 𝐴 ( 𝑅1 “ On ) → ( ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) )
3 1 2 mpbii ( 𝐴 ( 𝑅1 “ On ) → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) )
4 3 simpld ( 𝐴 ( 𝑅1 “ On ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )