Step |
Hyp |
Ref |
Expression |
1 |
|
limsuc |
⊢ ( Lim 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
3 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
4 |
3
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( rank ‘ 𝒫 𝑥 ) = ( rank ‘ 𝒫 𝐴 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) ) |
6 |
|
suceq |
⊢ ( ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) → suc ( rank ‘ 𝑥 ) = suc ( rank ‘ 𝐴 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑥 = 𝐴 → suc ( rank ‘ 𝑥 ) = suc ( rank ‘ 𝐴 ) ) |
8 |
4 7
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( rank ‘ 𝒫 𝑥 ) = suc ( rank ‘ 𝑥 ) ↔ ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) ) |
9 |
|
vex |
⊢ 𝑥 ∈ V |
10 |
9
|
rankpw |
⊢ ( rank ‘ 𝒫 𝑥 ) = suc ( rank ‘ 𝑥 ) |
11 |
8 10
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝐴 ∈ V → ( ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐵 ) → ( ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
14 |
2 13
|
bitr4d |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) |
15 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ 𝐴 ) = ∅ ) |
16 |
|
pwexb |
⊢ ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V ) |
17 |
|
fvprc |
⊢ ( ¬ 𝒫 𝐴 ∈ V → ( rank ‘ 𝒫 𝐴 ) = ∅ ) |
18 |
16 17
|
sylnbi |
⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ 𝒫 𝐴 ) = ∅ ) |
19 |
15 18
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ 𝐴 ) = ( rank ‘ 𝒫 𝐴 ) ) |
20 |
19
|
eleq1d |
⊢ ( ¬ 𝐴 ∈ V → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) |
21 |
20
|
adantr |
⊢ ( ( ¬ 𝐴 ∈ V ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) |
22 |
14 21
|
pm2.61ian |
⊢ ( Lim 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) |