Step |
Hyp |
Ref |
Expression |
1 |
|
rankxpl.1 |
⊢ 𝐴 ∈ V |
2 |
|
rankxpl.2 |
⊢ 𝐵 ∈ V |
3 |
|
mapsspw |
⊢ ( 𝐴 ↑m 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 ) |
4 |
2 1
|
xpex |
⊢ ( 𝐵 × 𝐴 ) ∈ V |
5 |
4
|
pwex |
⊢ 𝒫 ( 𝐵 × 𝐴 ) ∈ V |
6 |
5
|
rankss |
⊢ ( ( 𝐴 ↑m 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 ) → ( rank ‘ ( 𝐴 ↑m 𝐵 ) ) ⊆ ( rank ‘ 𝒫 ( 𝐵 × 𝐴 ) ) ) |
7 |
3 6
|
ax-mp |
⊢ ( rank ‘ ( 𝐴 ↑m 𝐵 ) ) ⊆ ( rank ‘ 𝒫 ( 𝐵 × 𝐴 ) ) |
8 |
4
|
rankpw |
⊢ ( rank ‘ 𝒫 ( 𝐵 × 𝐴 ) ) = suc ( rank ‘ ( 𝐵 × 𝐴 ) ) |
9 |
2 1
|
rankxpu |
⊢ ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) |
10 |
|
uncom |
⊢ ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) |
11 |
10
|
fveq2i |
⊢ ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
12 |
|
suceq |
⊢ ( ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) → suc ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
13 |
11 12
|
ax-mp |
⊢ suc ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
14 |
|
suceq |
⊢ ( suc ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) → suc suc ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
15 |
13 14
|
ax-mp |
⊢ suc suc ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
16 |
9 15
|
sseqtri |
⊢ ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
17 |
|
rankon |
⊢ ( rank ‘ ( 𝐵 × 𝐴 ) ) ∈ On |
18 |
17
|
onordi |
⊢ Ord ( rank ‘ ( 𝐵 × 𝐴 ) ) |
19 |
|
rankon |
⊢ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ On |
20 |
19
|
onsuci |
⊢ suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ On |
21 |
20
|
onsuci |
⊢ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ On |
22 |
21
|
onordi |
⊢ Ord suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
23 |
|
ordsucsssuc |
⊢ ( ( Ord ( rank ‘ ( 𝐵 × 𝐴 ) ) ∧ Ord suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ suc ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
24 |
18 22 23
|
mp2an |
⊢ ( ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ suc ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
25 |
16 24
|
mpbi |
⊢ suc ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
26 |
8 25
|
eqsstri |
⊢ ( rank ‘ 𝒫 ( 𝐵 × 𝐴 ) ) ⊆ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
27 |
7 26
|
sstri |
⊢ ( rank ‘ ( 𝐴 ↑m 𝐵 ) ) ⊆ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |