Description: The rank of a set is an ordinal number. Proposition 9.15(1) of TakeutiZaring p. 79. (Contributed by NM, 5-Oct-2003) (Revised by Mario Carneiro, 12-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankf | ⊢ rank : ∪ ( 𝑅1 “ On ) ⟶ On | |
| 2 | 0elon | ⊢ ∅ ∈ On | |
| 3 | 1 2 | f0cli | ⊢ ( rank ‘ 𝐴 ) ∈ On |