Description: The rank of an ordinal number is itself. Proposition 9.18 of TakeutiZaring p. 79 and its converse. (Contributed by NM, 14-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rankonid | ⊢ ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ 𝐴 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankonidlem | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = 𝐴 ) ) | |
2 | 1 | simprd | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ 𝐴 ) = 𝐴 ) |
3 | id | ⊢ ( ( rank ‘ 𝐴 ) = 𝐴 → ( rank ‘ 𝐴 ) = 𝐴 ) | |
4 | rankdmr1 | ⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 | |
5 | 3 4 | eqeltrrdi | ⊢ ( ( rank ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ dom 𝑅1 ) |
6 | 2 5 | impbii | ⊢ ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ 𝐴 ) = 𝐴 ) |