Metamath Proof Explorer


Theorem rankonid

Description: The rank of an ordinal number is itself. Proposition 9.18 of TakeutiZaring p. 79 and its converse. (Contributed by NM, 14-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankonid ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 rankonidlem ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = 𝐴 ) )
2 1 simprd ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ 𝐴 ) = 𝐴 )
3 id ( ( rank ‘ 𝐴 ) = 𝐴 → ( rank ‘ 𝐴 ) = 𝐴 )
4 rankdmr1 ( rank ‘ 𝐴 ) ∈ dom 𝑅1
5 3 4 eqeltrrdi ( ( rank ‘ 𝐴 ) = 𝐴𝐴 ∈ dom 𝑅1 )
6 2 5 impbii ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ 𝐴 ) = 𝐴 )