| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r1funlim | ⊢ ( Fun  𝑅1  ∧  Lim  dom  𝑅1 ) | 
						
							| 2 | 1 | simpri | ⊢ Lim  dom  𝑅1 | 
						
							| 3 |  | limord | ⊢ ( Lim  dom  𝑅1  →  Ord  dom  𝑅1 ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ Ord  dom  𝑅1 | 
						
							| 5 |  | ordelon | ⊢ ( ( Ord  dom  𝑅1  ∧  𝐴  ∈  dom  𝑅1 )  →  𝐴  ∈  On ) | 
						
							| 6 | 4 5 | mpan | ⊢ ( 𝐴  ∈  dom  𝑅1  →  𝐴  ∈  On ) | 
						
							| 7 |  | eleq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  dom  𝑅1  ↔  𝑦  ∈  dom  𝑅1 ) ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ↔  𝑦  ∈  ∪  ( 𝑅1  “  On ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( rank ‘ 𝑥 )  =  ( rank ‘ 𝑦 ) ) | 
						
							| 10 |  | id | ⊢ ( 𝑥  =  𝑦  →  𝑥  =  𝑦 ) | 
						
							| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( rank ‘ 𝑥 )  =  𝑥  ↔  ( rank ‘ 𝑦 )  =  𝑦 ) ) | 
						
							| 12 | 8 11 | anbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑥 )  =  𝑥 )  ↔  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) ) ) | 
						
							| 13 | 7 12 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  dom  𝑅1  →  ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑥 )  =  𝑥 ) )  ↔  ( 𝑦  ∈  dom  𝑅1  →  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) ) ) ) | 
						
							| 14 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  dom  𝑅1  ↔  𝐴  ∈  dom  𝑅1 ) ) | 
						
							| 15 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ↔  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( rank ‘ 𝑥 )  =  ( rank ‘ 𝐴 ) ) | 
						
							| 17 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 18 | 16 17 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( rank ‘ 𝑥 )  =  𝑥  ↔  ( rank ‘ 𝐴 )  =  𝐴 ) ) | 
						
							| 19 | 15 18 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑥 )  =  𝑥 )  ↔  ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝐴 )  =  𝐴 ) ) ) | 
						
							| 20 | 14 19 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  dom  𝑅1  →  ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑥 )  =  𝑥 ) )  ↔  ( 𝐴  ∈  dom  𝑅1  →  ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝐴 )  =  𝐴 ) ) ) ) | 
						
							| 21 |  | ordtr1 | ⊢ ( Ord  dom  𝑅1  →  ( ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  dom  𝑅1 )  →  𝑦  ∈  dom  𝑅1 ) ) | 
						
							| 22 | 4 21 | ax-mp | ⊢ ( ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  dom  𝑅1 )  →  𝑦  ∈  dom  𝑅1 ) | 
						
							| 23 | 22 | ancoms | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  dom  𝑅1 ) | 
						
							| 24 |  | pm5.5 | ⊢ ( 𝑦  ∈  dom  𝑅1  →  ( ( 𝑦  ∈  dom  𝑅1  →  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  ↔  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  →  ( ( 𝑦  ∈  dom  𝑅1  →  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  ↔  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) ) ) | 
						
							| 26 | 25 | ralbidva | ⊢ ( 𝑥  ∈  dom  𝑅1  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  dom  𝑅1  →  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) ) ) | 
						
							| 27 |  | simplr | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  𝑦  ∈  𝑥 ) | 
						
							| 28 |  | ordelon | ⊢ ( ( Ord  dom  𝑅1  ∧  𝑥  ∈  dom  𝑅1 )  →  𝑥  ∈  On ) | 
						
							| 29 | 4 28 | mpan | ⊢ ( 𝑥  ∈  dom  𝑅1  →  𝑥  ∈  On ) | 
						
							| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  𝑥  ∈  On ) | 
						
							| 31 |  | eloni | ⊢ ( 𝑥  ∈  On  →  Ord  𝑥 ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  Ord  𝑥 ) | 
						
							| 33 |  | ordelsuc | ⊢ ( ( 𝑦  ∈  𝑥  ∧  Ord  𝑥 )  →  ( 𝑦  ∈  𝑥  ↔  suc  𝑦  ⊆  𝑥 ) ) | 
						
							| 34 | 27 32 33 | syl2anc | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑦  ∈  𝑥  ↔  suc  𝑦  ⊆  𝑥 ) ) | 
						
							| 35 | 27 34 | mpbid | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  suc  𝑦  ⊆  𝑥 ) | 
						
							| 36 | 23 | adantr | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  𝑦  ∈  dom  𝑅1 ) | 
						
							| 37 |  | limsuc | ⊢ ( Lim  dom  𝑅1  →  ( 𝑦  ∈  dom  𝑅1  ↔  suc  𝑦  ∈  dom  𝑅1 ) ) | 
						
							| 38 | 2 37 | ax-mp | ⊢ ( 𝑦  ∈  dom  𝑅1  ↔  suc  𝑦  ∈  dom  𝑅1 ) | 
						
							| 39 | 36 38 | sylib | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  suc  𝑦  ∈  dom  𝑅1 ) | 
						
							| 40 |  | simpll | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  𝑥  ∈  dom  𝑅1 ) | 
						
							| 41 |  | r1ord3g | ⊢ ( ( suc  𝑦  ∈  dom  𝑅1  ∧  𝑥  ∈  dom  𝑅1 )  →  ( suc  𝑦  ⊆  𝑥  →  ( 𝑅1 ‘ suc  𝑦 )  ⊆  ( 𝑅1 ‘ 𝑥 ) ) ) | 
						
							| 42 | 39 40 41 | syl2anc | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ( suc  𝑦  ⊆  𝑥  →  ( 𝑅1 ‘ suc  𝑦 )  ⊆  ( 𝑅1 ‘ 𝑥 ) ) ) | 
						
							| 43 | 35 42 | mpd | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑅1 ‘ suc  𝑦 )  ⊆  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 44 |  | rankidb | ⊢ ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  →  𝑦  ∈  ( 𝑅1 ‘ suc  ( rank ‘ 𝑦 ) ) ) | 
						
							| 45 | 44 | ad2antrl | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  𝑦  ∈  ( 𝑅1 ‘ suc  ( rank ‘ 𝑦 ) ) ) | 
						
							| 46 |  | suceq | ⊢ ( ( rank ‘ 𝑦 )  =  𝑦  →  suc  ( rank ‘ 𝑦 )  =  suc  𝑦 ) | 
						
							| 47 | 46 | ad2antll | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  suc  ( rank ‘ 𝑦 )  =  suc  𝑦 ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑅1 ‘ suc  ( rank ‘ 𝑦 ) )  =  ( 𝑅1 ‘ suc  𝑦 ) ) | 
						
							| 49 | 45 48 | eleqtrd | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  𝑦  ∈  ( 𝑅1 ‘ suc  𝑦 ) ) | 
						
							| 50 | 43 49 | sseldd | ⊢ ( ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  𝑦  ∈  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 51 | 50 | ex | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  𝑦  ∈  𝑥 )  →  ( ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 )  →  𝑦  ∈  ( 𝑅1 ‘ 𝑥 ) ) ) | 
						
							| 52 | 51 | ralimdva | ⊢ ( 𝑥  ∈  dom  𝑅1  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 )  →  ∀ 𝑦  ∈  𝑥 𝑦  ∈  ( 𝑅1 ‘ 𝑥 ) ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ∀ 𝑦  ∈  𝑥 𝑦  ∈  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 54 |  | dfss3 | ⊢ ( 𝑥  ⊆  ( 𝑅1 ‘ 𝑥 )  ↔  ∀ 𝑦  ∈  𝑥 𝑦  ∈  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 55 | 53 54 | sylibr | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  𝑥  ⊆  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 56 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 57 | 56 | elpw | ⊢ ( 𝑥  ∈  𝒫  ( 𝑅1 ‘ 𝑥 )  ↔  𝑥  ⊆  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 58 | 55 57 | sylibr | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  𝑥  ∈  𝒫  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 59 |  | r1sucg | ⊢ ( 𝑥  ∈  dom  𝑅1  →  ( 𝑅1 ‘ suc  𝑥 )  =  𝒫  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑅1 ‘ suc  𝑥 )  =  𝒫  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 61 | 58 60 | eleqtrrd | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  𝑥  ∈  ( 𝑅1 ‘ suc  𝑥 ) ) | 
						
							| 62 |  | r1elwf | ⊢ ( 𝑥  ∈  ( 𝑅1 ‘ suc  𝑥 )  →  𝑥  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 63 | 61 62 | syl | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  𝑥  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 64 |  | rankval3b | ⊢ ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ 𝑥 )  =  ∩  { 𝑧  ∈  On  ∣  ∀ 𝑦  ∈  𝑥 ( rank ‘ 𝑦 )  ∈  𝑧 } ) | 
						
							| 65 | 63 64 | syl | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ( rank ‘ 𝑥 )  =  ∩  { 𝑧  ∈  On  ∣  ∀ 𝑦  ∈  𝑥 ( rank ‘ 𝑦 )  ∈  𝑧 } ) | 
						
							| 66 |  | eleq1 | ⊢ ( ( rank ‘ 𝑦 )  =  𝑦  →  ( ( rank ‘ 𝑦 )  ∈  𝑧  ↔  𝑦  ∈  𝑧 ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 )  →  ( ( rank ‘ 𝑦 )  ∈  𝑧  ↔  𝑦  ∈  𝑧 ) ) | 
						
							| 68 | 67 | ralimi | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 )  →  ∀ 𝑦  ∈  𝑥 ( ( rank ‘ 𝑦 )  ∈  𝑧  ↔  𝑦  ∈  𝑧 ) ) | 
						
							| 69 |  | ralbi | ⊢ ( ∀ 𝑦  ∈  𝑥 ( ( rank ‘ 𝑦 )  ∈  𝑧  ↔  𝑦  ∈  𝑧 )  →  ( ∀ 𝑦  ∈  𝑥 ( rank ‘ 𝑦 )  ∈  𝑧  ↔  ∀ 𝑦  ∈  𝑥 𝑦  ∈  𝑧 ) ) | 
						
							| 70 | 68 69 | syl | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 )  →  ( ∀ 𝑦  ∈  𝑥 ( rank ‘ 𝑦 )  ∈  𝑧  ↔  ∀ 𝑦  ∈  𝑥 𝑦  ∈  𝑧 ) ) | 
						
							| 71 |  | dfss3 | ⊢ ( 𝑥  ⊆  𝑧  ↔  ∀ 𝑦  ∈  𝑥 𝑦  ∈  𝑧 ) | 
						
							| 72 | 70 71 | bitr4di | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 )  →  ( ∀ 𝑦  ∈  𝑥 ( rank ‘ 𝑦 )  ∈  𝑧  ↔  𝑥  ⊆  𝑧 ) ) | 
						
							| 73 | 72 | rabbidv | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 )  →  { 𝑧  ∈  On  ∣  ∀ 𝑦  ∈  𝑥 ( rank ‘ 𝑦 )  ∈  𝑧 }  =  { 𝑧  ∈  On  ∣  𝑥  ⊆  𝑧 } ) | 
						
							| 74 | 73 | inteqd | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 )  →  ∩  { 𝑧  ∈  On  ∣  ∀ 𝑦  ∈  𝑥 ( rank ‘ 𝑦 )  ∈  𝑧 }  =  ∩  { 𝑧  ∈  On  ∣  𝑥  ⊆  𝑧 } ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ∩  { 𝑧  ∈  On  ∣  ∀ 𝑦  ∈  𝑥 ( rank ‘ 𝑦 )  ∈  𝑧 }  =  ∩  { 𝑧  ∈  On  ∣  𝑥  ⊆  𝑧 } ) | 
						
							| 76 | 29 | adantr | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  𝑥  ∈  On ) | 
						
							| 77 |  | intmin | ⊢ ( 𝑥  ∈  On  →  ∩  { 𝑧  ∈  On  ∣  𝑥  ⊆  𝑧 }  =  𝑥 ) | 
						
							| 78 | 76 77 | syl | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ∩  { 𝑧  ∈  On  ∣  𝑥  ⊆  𝑧 }  =  𝑥 ) | 
						
							| 79 | 65 75 78 | 3eqtrd | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ( rank ‘ 𝑥 )  =  𝑥 ) | 
						
							| 80 | 63 79 | jca | ⊢ ( ( 𝑥  ∈  dom  𝑅1  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑥 )  =  𝑥 ) ) | 
						
							| 81 | 80 | ex | ⊢ ( 𝑥  ∈  dom  𝑅1  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 )  →  ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑥 )  =  𝑥 ) ) ) | 
						
							| 82 | 26 81 | sylbid | ⊢ ( 𝑥  ∈  dom  𝑅1  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  dom  𝑅1  →  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑥 )  =  𝑥 ) ) ) | 
						
							| 83 | 82 | com12 | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  dom  𝑅1  →  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑥  ∈  dom  𝑅1  →  ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑥 )  =  𝑥 ) ) ) | 
						
							| 84 | 83 | a1i | ⊢ ( 𝑥  ∈  On  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑦  ∈  dom  𝑅1  →  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑥  ∈  dom  𝑅1  →  ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝑥 )  =  𝑥 ) ) ) ) | 
						
							| 85 | 13 20 84 | tfis3 | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  ∈  dom  𝑅1  →  ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝐴 )  =  𝐴 ) ) ) | 
						
							| 86 | 6 85 | mpcom | ⊢ ( 𝐴  ∈  dom  𝑅1  →  ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝐴 )  =  𝐴 ) ) |