Metamath Proof Explorer
Description: The rank of an ordered pair. Part of Exercise 4 of Kunen p. 107.
(Contributed by NM, 13-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)
|
|
Ref |
Expression |
|
Hypotheses |
ranksn.1 |
⊢ 𝐴 ∈ V |
|
|
rankun.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
rankop |
⊢ ( rank ‘ 〈 𝐴 , 𝐵 〉 ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ranksn.1 |
⊢ 𝐴 ∈ V |
2 |
|
rankun.2 |
⊢ 𝐵 ∈ V |
3 |
|
unir1 |
⊢ ∪ ( 𝑅1 “ On ) = V |
4 |
1 3
|
eleqtrri |
⊢ 𝐴 ∈ ∪ ( 𝑅1 “ On ) |
5 |
2 3
|
eleqtrri |
⊢ 𝐵 ∈ ∪ ( 𝑅1 “ On ) |
6 |
|
rankopb |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ 〈 𝐴 , 𝐵 〉 ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
7 |
4 5 6
|
mp2an |
⊢ ( rank ‘ 〈 𝐴 , 𝐵 〉 ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |