Step |
Hyp |
Ref |
Expression |
1 |
|
dfopg |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 〈 𝐴 , 𝐵 〉 = { { 𝐴 } , { 𝐴 , 𝐵 } } ) |
2 |
1
|
fveq2d |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ 〈 𝐴 , 𝐵 〉 ) = ( rank ‘ { { 𝐴 } , { 𝐴 , 𝐵 } } ) ) |
3 |
|
snwf |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) |
4 |
|
prwf |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → { 𝐴 , 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) |
5 |
|
rankprb |
⊢ ( ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐴 , 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ { { 𝐴 } , { 𝐴 , 𝐵 } } ) = suc ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , 𝐵 } ) ) ) |
6 |
3 4 5
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ { { 𝐴 } , { 𝐴 , 𝐵 } } ) = suc ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , 𝐵 } ) ) ) |
7 |
|
snsspr1 |
⊢ { 𝐴 } ⊆ { 𝐴 , 𝐵 } |
8 |
|
ssequn1 |
⊢ ( { 𝐴 } ⊆ { 𝐴 , 𝐵 } ↔ ( { 𝐴 } ∪ { 𝐴 , 𝐵 } ) = { 𝐴 , 𝐵 } ) |
9 |
7 8
|
mpbi |
⊢ ( { 𝐴 } ∪ { 𝐴 , 𝐵 } ) = { 𝐴 , 𝐵 } |
10 |
9
|
fveq2i |
⊢ ( rank ‘ ( { 𝐴 } ∪ { 𝐴 , 𝐵 } ) ) = ( rank ‘ { 𝐴 , 𝐵 } ) |
11 |
|
rankunb |
⊢ ( ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐴 , 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ( { 𝐴 } ∪ { 𝐴 , 𝐵 } ) ) = ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , 𝐵 } ) ) ) |
12 |
3 4 11
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ( { 𝐴 } ∪ { 𝐴 , 𝐵 } ) ) = ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , 𝐵 } ) ) ) |
13 |
|
rankprb |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ { 𝐴 , 𝐵 } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
14 |
10 12 13
|
3eqtr3a |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , 𝐵 } ) ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
15 |
|
suceq |
⊢ ( ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , 𝐵 } ) ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → suc ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , 𝐵 } ) ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → suc ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , 𝐵 } ) ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
17 |
2 6 16
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ 〈 𝐴 , 𝐵 〉 ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |