| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfopg | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  〈 𝐴 ,  𝐵 〉  =  { { 𝐴 } ,  { 𝐴 ,  𝐵 } } ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ 〈 𝐴 ,  𝐵 〉 )  =  ( rank ‘ { { 𝐴 } ,  { 𝐴 ,  𝐵 } } ) ) | 
						
							| 3 |  | snwf | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  { 𝐴 }  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 4 |  | prwf | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  { 𝐴 ,  𝐵 }  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 5 |  | rankprb | ⊢ ( ( { 𝐴 }  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐴 ,  𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ { { 𝐴 } ,  { 𝐴 ,  𝐵 } } )  =  suc  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 6 | 3 4 5 | syl2an2r | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ { { 𝐴 } ,  { 𝐴 ,  𝐵 } } )  =  suc  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 7 |  | snsspr1 | ⊢ { 𝐴 }  ⊆  { 𝐴 ,  𝐵 } | 
						
							| 8 |  | ssequn1 | ⊢ ( { 𝐴 }  ⊆  { 𝐴 ,  𝐵 }  ↔  ( { 𝐴 }  ∪  { 𝐴 ,  𝐵 } )  =  { 𝐴 ,  𝐵 } ) | 
						
							| 9 | 7 8 | mpbi | ⊢ ( { 𝐴 }  ∪  { 𝐴 ,  𝐵 } )  =  { 𝐴 ,  𝐵 } | 
						
							| 10 | 9 | fveq2i | ⊢ ( rank ‘ ( { 𝐴 }  ∪  { 𝐴 ,  𝐵 } ) )  =  ( rank ‘ { 𝐴 ,  𝐵 } ) | 
						
							| 11 |  | rankunb | ⊢ ( ( { 𝐴 }  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐴 ,  𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ( { 𝐴 }  ∪  { 𝐴 ,  𝐵 } ) )  =  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 12 | 3 4 11 | syl2an2r | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ( { 𝐴 }  ∪  { 𝐴 ,  𝐵 } ) )  =  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 13 |  | rankprb | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ { 𝐴 ,  𝐵 } )  =  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) | 
						
							| 14 | 10 12 13 | 3eqtr3a | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  𝐵 } ) )  =  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) | 
						
							| 15 |  | suceq | ⊢ ( ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  𝐵 } ) )  =  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  →  suc  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  𝐵 } ) )  =  suc  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  suc  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  𝐵 } ) )  =  suc  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) | 
						
							| 17 | 2 6 16 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ 〈 𝐴 ,  𝐵 〉 )  =  suc  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) |