Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
rankpr
Metamath Proof Explorer
Description: The rank of an unordered pair. Part of Exercise 30 of Enderton
p. 207. (Contributed by NM , 28-Nov-2003) (Revised by Mario Carneiro , 17-Nov-2014)
Ref
Expression
Hypotheses
ranksn.1
⊢ 𝐴 ∈ V
rankun.2
⊢ 𝐵 ∈ V
Assertion
rankpr
⊢ ( rank ‘ { 𝐴 , 𝐵 } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) )
Proof
Step
Hyp
Ref
Expression
1
ranksn.1
⊢ 𝐴 ∈ V
2
rankun.2
⊢ 𝐵 ∈ V
3
unir1
⊢ ∪ ( 𝑅1 “ On ) = V
4
1 3
eleqtrri
⊢ 𝐴 ∈ ∪ ( 𝑅1 “ On )
5
2 3
eleqtrri
⊢ 𝐵 ∈ ∪ ( 𝑅1 “ On )
6
rankprb
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ { 𝐴 , 𝐵 } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) )
7
4 5 6
mp2an
⊢ ( rank ‘ { 𝐴 , 𝐵 } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) )