Step |
Hyp |
Ref |
Expression |
1 |
|
snwf |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) |
2 |
|
snwf |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) |
3 |
|
rankunb |
⊢ ( ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐵 } ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐵 } ) ) ) |
5 |
|
ranksnb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) ) |
6 |
|
ranksnb |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝐵 } ) = suc ( rank ‘ 𝐵 ) ) |
7 |
|
uneq12 |
⊢ ( ( ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) ∧ ( rank ‘ { 𝐵 } ) = suc ( rank ‘ 𝐵 ) ) → ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐵 } ) ) = ( suc ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) |
8 |
5 6 7
|
syl2an |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐵 } ) ) = ( suc ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) |
9 |
4 8
|
eqtrd |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( suc ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) |
10 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
11 |
10
|
fveq2i |
⊢ ( rank ‘ { 𝐴 , 𝐵 } ) = ( rank ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) |
12 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
13 |
12
|
onordi |
⊢ Ord ( rank ‘ 𝐴 ) |
14 |
|
rankon |
⊢ ( rank ‘ 𝐵 ) ∈ On |
15 |
14
|
onordi |
⊢ Ord ( rank ‘ 𝐵 ) |
16 |
|
ordsucun |
⊢ ( ( Ord ( rank ‘ 𝐴 ) ∧ Ord ( rank ‘ 𝐵 ) ) → suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) = ( suc ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) |
17 |
13 15 16
|
mp2an |
⊢ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) = ( suc ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) |
18 |
9 11 17
|
3eqtr4g |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ { 𝐴 , 𝐵 } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |