| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snwf | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  { 𝐴 }  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 2 |  | snwf | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 3 |  | rankunb | ⊢ ( ( { 𝐴 }  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ( { 𝐴 }  ∪  { 𝐵 } ) )  =  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐵 } ) ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ( { 𝐴 }  ∪  { 𝐵 } ) )  =  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐵 } ) ) ) | 
						
							| 5 |  | ranksnb | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ { 𝐴 } )  =  suc  ( rank ‘ 𝐴 ) ) | 
						
							| 6 |  | ranksnb | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ { 𝐵 } )  =  suc  ( rank ‘ 𝐵 ) ) | 
						
							| 7 |  | uneq12 | ⊢ ( ( ( rank ‘ { 𝐴 } )  =  suc  ( rank ‘ 𝐴 )  ∧  ( rank ‘ { 𝐵 } )  =  suc  ( rank ‘ 𝐵 ) )  →  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐵 } ) )  =  ( suc  ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) ) ) | 
						
							| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐵 } ) )  =  ( suc  ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) ) ) | 
						
							| 9 | 4 8 | eqtrd | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ( { 𝐴 }  ∪  { 𝐵 } ) )  =  ( suc  ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) ) ) | 
						
							| 10 |  | df-pr | ⊢ { 𝐴 ,  𝐵 }  =  ( { 𝐴 }  ∪  { 𝐵 } ) | 
						
							| 11 | 10 | fveq2i | ⊢ ( rank ‘ { 𝐴 ,  𝐵 } )  =  ( rank ‘ ( { 𝐴 }  ∪  { 𝐵 } ) ) | 
						
							| 12 |  | rankon | ⊢ ( rank ‘ 𝐴 )  ∈  On | 
						
							| 13 | 12 | onordi | ⊢ Ord  ( rank ‘ 𝐴 ) | 
						
							| 14 |  | rankon | ⊢ ( rank ‘ 𝐵 )  ∈  On | 
						
							| 15 | 14 | onordi | ⊢ Ord  ( rank ‘ 𝐵 ) | 
						
							| 16 |  | ordsucun | ⊢ ( ( Ord  ( rank ‘ 𝐴 )  ∧  Ord  ( rank ‘ 𝐵 ) )  →  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  =  ( suc  ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) ) ) | 
						
							| 17 | 13 15 16 | mp2an | ⊢ suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  =  ( suc  ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) ) | 
						
							| 18 | 9 11 17 | 3eqtr4g | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ { 𝐴 ,  𝐵 } )  =  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) |