| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankidn | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ¬  𝐴  ∈  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 2 |  | rankon | ⊢ ( rank ‘ 𝐴 )  ∈  On | 
						
							| 3 |  | r1suc | ⊢ ( ( rank ‘ 𝐴 )  ∈  On  →  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  =  𝒫  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  =  𝒫  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) | 
						
							| 5 | 4 | eleq2i | ⊢ ( 𝒫  𝐴  ∈  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  ↔  𝒫  𝐴  ∈  𝒫  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 6 |  | elpwi | ⊢ ( 𝒫  𝐴  ∈  𝒫  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) )  →  𝒫  𝐴  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 7 |  | pwidg | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝐴  ∈  𝒫  𝐴 ) | 
						
							| 8 |  | ssel | ⊢ ( 𝒫  𝐴  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) )  →  ( 𝐴  ∈  𝒫  𝐴  →  𝐴  ∈  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | 
						
							| 9 | 6 7 8 | syl2imc | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝒫  𝐴  ∈  𝒫  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) )  →  𝐴  ∈  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | 
						
							| 10 | 5 9 | biimtrid | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝒫  𝐴  ∈  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  →  𝐴  ∈  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | 
						
							| 11 | 1 10 | mtod | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ¬  𝒫  𝐴  ∈  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) ) ) | 
						
							| 12 |  | r1rankidb | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝐴  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 13 | 12 | sspwd | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝒫  𝐴  ⊆  𝒫  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 14 | 13 4 | sseqtrrdi | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝒫  𝐴  ⊆  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) ) ) | 
						
							| 15 |  | fvex | ⊢ ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  ∈  V | 
						
							| 16 | 15 | elpw2 | ⊢ ( 𝒫  𝐴  ∈  𝒫  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  ↔  𝒫  𝐴  ⊆  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) ) ) | 
						
							| 17 | 14 16 | sylibr | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝒫  𝐴  ∈  𝒫  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) ) ) | 
						
							| 18 | 2 | onsuci | ⊢ suc  ( rank ‘ 𝐴 )  ∈  On | 
						
							| 19 |  | r1suc | ⊢ ( suc  ( rank ‘ 𝐴 )  ∈  On  →  ( 𝑅1 ‘ suc  suc  ( rank ‘ 𝐴 ) )  =  𝒫  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) ) ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ ( 𝑅1 ‘ suc  suc  ( rank ‘ 𝐴 ) )  =  𝒫  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) ) | 
						
							| 21 | 17 20 | eleqtrrdi | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝒫  𝐴  ∈  ( 𝑅1 ‘ suc  suc  ( rank ‘ 𝐴 ) ) ) | 
						
							| 22 |  | pwwf | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ↔  𝒫  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 23 |  | rankr1c | ⊢ ( 𝒫  𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( suc  ( rank ‘ 𝐴 )  =  ( rank ‘ 𝒫  𝐴 )  ↔  ( ¬  𝒫  𝐴  ∈  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  ∧  𝒫  𝐴  ∈  ( 𝑅1 ‘ suc  suc  ( rank ‘ 𝐴 ) ) ) ) ) | 
						
							| 24 | 22 23 | sylbi | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( suc  ( rank ‘ 𝐴 )  =  ( rank ‘ 𝒫  𝐴 )  ↔  ( ¬  𝒫  𝐴  ∈  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  ∧  𝒫  𝐴  ∈  ( 𝑅1 ‘ suc  suc  ( rank ‘ 𝐴 ) ) ) ) ) | 
						
							| 25 | 11 21 24 | mpbir2and | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  suc  ( rank ‘ 𝐴 )  =  ( rank ‘ 𝒫  𝐴 ) ) | 
						
							| 26 | 25 | eqcomd | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ 𝒫  𝐴 )  =  suc  ( rank ‘ 𝐴 ) ) |