Metamath Proof Explorer


Theorem rankr1a

Description: A relationship between rank and R1 , clearly equivalent to ssrankr1 and friends through trichotomy, but in Raph's opinion considerably more intuitive. See rankr1b for the subset version. (Contributed by Raph Levien, 29-May-2004)

Ref Expression
Hypothesis rankid.1 𝐴 ∈ V
Assertion rankr1a ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 rankid.1 𝐴 ∈ V
2 1 ssrankr1 ( 𝐵 ∈ On → ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ↔ ¬ 𝐴 ∈ ( 𝑅1𝐵 ) ) )
3 rankon ( rank ‘ 𝐴 ) ∈ On
4 ontri1 ( ( 𝐵 ∈ On ∧ ( rank ‘ 𝐴 ) ∈ On ) → ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ 𝐵 ) )
5 3 4 mpan2 ( 𝐵 ∈ On → ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ 𝐵 ) )
6 2 5 bitr3d ( 𝐵 ∈ On → ( ¬ 𝐴 ∈ ( 𝑅1𝐵 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ 𝐵 ) )
7 6 con4bid ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) )