Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ dom 𝑅1 ) |
2 |
|
r1val1 |
⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
3 |
2
|
eleq2d |
⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
4 |
|
eliun |
⊢ ( 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝒫 ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
5 |
3 4
|
bitrdi |
⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
6 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
7 |
6
|
simpri |
⊢ Lim dom 𝑅1 |
8 |
|
limord |
⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) |
9 |
7 8
|
ax-mp |
⊢ Ord dom 𝑅1 |
10 |
|
ordtr1 |
⊢ ( Ord dom 𝑅1 → ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) ) |
11 |
9 10
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) |
12 |
11
|
ancoms |
⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ dom 𝑅1 ) |
13 |
|
r1sucg |
⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
14 |
13
|
eleq2d |
⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
15 |
12 14
|
syl |
⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
16 |
|
ordsson |
⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) |
17 |
9 16
|
ax-mp |
⊢ dom 𝑅1 ⊆ On |
18 |
17 12
|
sselid |
⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
19 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ↔ ( 𝑥 ∈ On ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) |
20 |
|
intss1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) |
21 |
19 20
|
sylbir |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) |
22 |
18 21
|
sylan |
⊢ ( ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) |
23 |
22
|
ex |
⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) ) |
24 |
15 23
|
sylbird |
⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) ) |
25 |
24
|
reximdva |
⊢ ( 𝐵 ∈ dom 𝑅1 → ( ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) → ∃ 𝑥 ∈ 𝐵 ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) ) |
26 |
5 25
|
sylbid |
⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) ) |
27 |
1 26
|
mpcom |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) |
28 |
|
r1elwf |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
29 |
|
rankvalb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
30 |
28 29
|
syl |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
31 |
30
|
sseq1d |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ( rank ‘ 𝐴 ) ⊆ 𝑥 ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( rank ‘ 𝐴 ) ⊆ 𝑥 ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 ) ) |
33 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
34 |
17 1
|
sselid |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ On ) |
35 |
|
ontr2 |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( ( rank ‘ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
36 |
33 34 35
|
sylancr |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ( ( rank ‘ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ∈ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
37 |
36
|
expcomd |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( ( rank ‘ 𝐴 ) ⊆ 𝑥 → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) ) |
38 |
37
|
imp |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( rank ‘ 𝐴 ) ⊆ 𝑥 → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
39 |
32 38
|
sylbird |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
40 |
39
|
rexlimdva |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ⊆ 𝑥 → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
41 |
27 40
|
mpd |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) |