Description: A relationship between rank and R1 . See rankr1a for the membership version. (Contributed by NM, 15-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankr1b.1 | ⊢ 𝐴 ∈ V | |
| Assertion | rankr1b | ⊢ ( 𝐵 ∈ On → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rankr1b.1 | ⊢ 𝐴 ∈ V | |
| 2 | r1fnon | ⊢ 𝑅1 Fn On | |
| 3 | 2 | fndmi | ⊢ dom 𝑅1 = On | 
| 4 | 3 | eleq2i | ⊢ ( 𝐵 ∈ dom 𝑅1 ↔ 𝐵 ∈ On ) | 
| 5 | unir1 | ⊢ ∪ ( 𝑅1 “ On ) = V | |
| 6 | 1 5 | eleqtrri | ⊢ 𝐴 ∈ ∪ ( 𝑅1 “ On ) | 
| 7 | rankr1bg | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) | 
| 9 | 4 8 | sylbir | ⊢ ( 𝐵 ∈ On → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) |