Metamath Proof Explorer


Theorem rankr1b

Description: A relationship between rank and R1 . See rankr1a for the membership version. (Contributed by NM, 15-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankr1b.1 𝐴 ∈ V
Assertion rankr1b ( 𝐵 ∈ On → ( 𝐴 ⊆ ( 𝑅1𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 rankr1b.1 𝐴 ∈ V
2 r1fnon 𝑅1 Fn On
3 2 fndmi dom 𝑅1 = On
4 3 eleq2i ( 𝐵 ∈ dom 𝑅1𝐵 ∈ On )
5 unir1 ( 𝑅1 “ On ) = V
6 1 5 eleqtrri 𝐴 ( 𝑅1 “ On )
7 rankr1bg ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) )
8 6 7 mpan ( 𝐵 ∈ dom 𝑅1 → ( 𝐴 ⊆ ( 𝑅1𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) )
9 4 8 sylbir ( 𝐵 ∈ On → ( 𝐴 ⊆ ( 𝑅1𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) )