Step |
Hyp |
Ref |
Expression |
1 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
2 |
1
|
simpri |
⊢ Lim dom 𝑅1 |
3 |
|
limsuc |
⊢ ( Lim dom 𝑅1 → ( 𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1 ) ) |
4 |
2 3
|
ax-mp |
⊢ ( 𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1 ) |
5 |
|
rankr1ag |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ suc 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
6 |
4 5
|
sylan2b |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
7 |
|
r1sucg |
⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝐵 ) = 𝒫 ( 𝑅1 ‘ 𝐵 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝑅1 ‘ suc 𝐵 ) = 𝒫 ( 𝑅1 ‘ 𝐵 ) ) |
9 |
8
|
eleq2d |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝐵 ) ) ) |
10 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝐵 ) ∈ V |
11 |
10
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |
12 |
9 11
|
bitr2di |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
13 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
14 |
|
limord |
⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) |
15 |
2 14
|
ax-mp |
⊢ Ord dom 𝑅1 |
16 |
|
ordelon |
⊢ ( ( Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On ) |
17 |
15 16
|
mpan |
⊢ ( 𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On ) |
18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On ) |
19 |
|
onsssuc |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
20 |
13 18 19
|
sylancr |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
21 |
6 12 20
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) |