Metamath Proof Explorer


Theorem rankr1bg

Description: A relationship between rank and R1 . See rankr1ag for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankr1bg ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 r1funlim ( Fun 𝑅1 ∧ Lim dom 𝑅1 )
2 1 simpri Lim dom 𝑅1
3 limsuc ( Lim dom 𝑅1 → ( 𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1 ) )
4 2 3 ax-mp ( 𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1 )
5 rankr1ag ( ( 𝐴 ( 𝑅1 “ On ) ∧ suc 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) )
6 4 5 sylan2b ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) )
7 r1sucg ( 𝐵 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝐵 ) = 𝒫 ( 𝑅1𝐵 ) )
8 7 adantl ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝑅1 ‘ suc 𝐵 ) = 𝒫 ( 𝑅1𝐵 ) )
9 8 eleq2d ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1𝐵 ) ) )
10 fvex ( 𝑅1𝐵 ) ∈ V
11 10 elpw2 ( 𝐴 ∈ 𝒫 ( 𝑅1𝐵 ) ↔ 𝐴 ⊆ ( 𝑅1𝐵 ) )
12 9 11 bitr2di ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1𝐵 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) )
13 rankon ( rank ‘ 𝐴 ) ∈ On
14 limord ( Lim dom 𝑅1 → Ord dom 𝑅1 )
15 2 14 ax-mp Ord dom 𝑅1
16 ordelon ( ( Ord dom 𝑅1𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On )
17 15 16 mpan ( 𝐵 ∈ dom 𝑅1𝐵 ∈ On )
18 17 adantl ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On )
19 onsssuc ( ( ( rank ‘ 𝐴 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) )
20 13 18 19 sylancr ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) )
21 6 12 20 3bitr4d ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) )