Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐵 = ( rank ‘ 𝐴 ) → 𝐵 = ( rank ‘ 𝐴 ) ) |
2 |
|
rankdmr1 |
⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 |
3 |
1 2
|
eqeltrdi |
⊢ ( 𝐵 = ( rank ‘ 𝐴 ) → 𝐵 ∈ dom 𝑅1 ) |
4 |
3
|
a1i |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐵 = ( rank ‘ 𝐴 ) → 𝐵 ∈ dom 𝑅1 ) ) |
5 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → suc 𝐵 ∈ dom 𝑅1 ) |
6 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
7 |
6
|
simpri |
⊢ Lim dom 𝑅1 |
8 |
|
limsuc |
⊢ ( Lim dom 𝑅1 → ( 𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1 ) ) |
9 |
7 8
|
ax-mp |
⊢ ( 𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1 ) |
10 |
5 9
|
sylibr |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → 𝐵 ∈ dom 𝑅1 ) |
11 |
10
|
adantl |
⊢ ( ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) → 𝐵 ∈ dom 𝑅1 ) |
12 |
11
|
a1i |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) → 𝐵 ∈ dom 𝑅1 ) ) |
13 |
|
eqss |
⊢ ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) |
14 |
|
rankr1clem |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐵 ⊆ ( rank ‘ 𝐴 ) ) ) |
15 |
|
rankr1ag |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ suc 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
16 |
9 15
|
sylan2b |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
17 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
18 |
|
limord |
⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) |
19 |
7 18
|
ax-mp |
⊢ Ord dom 𝑅1 |
20 |
|
ordelon |
⊢ ( ( Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On ) |
21 |
19 20
|
mpan |
⊢ ( 𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On ) |
22 |
21
|
adantl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On ) |
23 |
|
onsssuc |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
24 |
17 22 23
|
sylancr |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
25 |
16 24
|
bitr4d |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) |
26 |
14 25
|
anbi12d |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ↔ ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) ) |
27 |
13 26
|
bitr4id |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |
28 |
27
|
ex |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐵 ∈ dom 𝑅1 → ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) ) |
29 |
4 12 28
|
pm5.21ndd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |