| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐵  =  ( rank ‘ 𝐴 )  →  𝐵  =  ( rank ‘ 𝐴 ) ) | 
						
							| 2 |  | rankdmr1 | ⊢ ( rank ‘ 𝐴 )  ∈  dom  𝑅1 | 
						
							| 3 | 1 2 | eqeltrdi | ⊢ ( 𝐵  =  ( rank ‘ 𝐴 )  →  𝐵  ∈  dom  𝑅1 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝐵  =  ( rank ‘ 𝐴 )  →  𝐵  ∈  dom  𝑅1 ) ) | 
						
							| 5 |  | elfvdm | ⊢ ( 𝐴  ∈  ( 𝑅1 ‘ suc  𝐵 )  →  suc  𝐵  ∈  dom  𝑅1 ) | 
						
							| 6 |  | r1funlim | ⊢ ( Fun  𝑅1  ∧  Lim  dom  𝑅1 ) | 
						
							| 7 | 6 | simpri | ⊢ Lim  dom  𝑅1 | 
						
							| 8 |  | limsuc | ⊢ ( Lim  dom  𝑅1  →  ( 𝐵  ∈  dom  𝑅1  ↔  suc  𝐵  ∈  dom  𝑅1 ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( 𝐵  ∈  dom  𝑅1  ↔  suc  𝐵  ∈  dom  𝑅1 ) | 
						
							| 10 | 5 9 | sylibr | ⊢ ( 𝐴  ∈  ( 𝑅1 ‘ suc  𝐵 )  →  𝐵  ∈  dom  𝑅1 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ¬  𝐴  ∈  ( 𝑅1 ‘ 𝐵 )  ∧  𝐴  ∈  ( 𝑅1 ‘ suc  𝐵 ) )  →  𝐵  ∈  dom  𝑅1 ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( ( ¬  𝐴  ∈  ( 𝑅1 ‘ 𝐵 )  ∧  𝐴  ∈  ( 𝑅1 ‘ suc  𝐵 ) )  →  𝐵  ∈  dom  𝑅1 ) ) | 
						
							| 13 |  | eqss | ⊢ ( 𝐵  =  ( rank ‘ 𝐴 )  ↔  ( 𝐵  ⊆  ( rank ‘ 𝐴 )  ∧  ( rank ‘ 𝐴 )  ⊆  𝐵 ) ) | 
						
							| 14 |  | rankr1clem | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  dom  𝑅1 )  →  ( ¬  𝐴  ∈  ( 𝑅1 ‘ 𝐵 )  ↔  𝐵  ⊆  ( rank ‘ 𝐴 ) ) ) | 
						
							| 15 |  | rankr1ag | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  suc  𝐵  ∈  dom  𝑅1 )  →  ( 𝐴  ∈  ( 𝑅1 ‘ suc  𝐵 )  ↔  ( rank ‘ 𝐴 )  ∈  suc  𝐵 ) ) | 
						
							| 16 | 9 15 | sylan2b | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  dom  𝑅1 )  →  ( 𝐴  ∈  ( 𝑅1 ‘ suc  𝐵 )  ↔  ( rank ‘ 𝐴 )  ∈  suc  𝐵 ) ) | 
						
							| 17 |  | rankon | ⊢ ( rank ‘ 𝐴 )  ∈  On | 
						
							| 18 |  | limord | ⊢ ( Lim  dom  𝑅1  →  Ord  dom  𝑅1 ) | 
						
							| 19 | 7 18 | ax-mp | ⊢ Ord  dom  𝑅1 | 
						
							| 20 |  | ordelon | ⊢ ( ( Ord  dom  𝑅1  ∧  𝐵  ∈  dom  𝑅1 )  →  𝐵  ∈  On ) | 
						
							| 21 | 19 20 | mpan | ⊢ ( 𝐵  ∈  dom  𝑅1  →  𝐵  ∈  On ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  dom  𝑅1 )  →  𝐵  ∈  On ) | 
						
							| 23 |  | onsssuc | ⊢ ( ( ( rank ‘ 𝐴 )  ∈  On  ∧  𝐵  ∈  On )  →  ( ( rank ‘ 𝐴 )  ⊆  𝐵  ↔  ( rank ‘ 𝐴 )  ∈  suc  𝐵 ) ) | 
						
							| 24 | 17 22 23 | sylancr | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  dom  𝑅1 )  →  ( ( rank ‘ 𝐴 )  ⊆  𝐵  ↔  ( rank ‘ 𝐴 )  ∈  suc  𝐵 ) ) | 
						
							| 25 | 16 24 | bitr4d | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  dom  𝑅1 )  →  ( 𝐴  ∈  ( 𝑅1 ‘ suc  𝐵 )  ↔  ( rank ‘ 𝐴 )  ⊆  𝐵 ) ) | 
						
							| 26 | 14 25 | anbi12d | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  dom  𝑅1 )  →  ( ( ¬  𝐴  ∈  ( 𝑅1 ‘ 𝐵 )  ∧  𝐴  ∈  ( 𝑅1 ‘ suc  𝐵 ) )  ↔  ( 𝐵  ⊆  ( rank ‘ 𝐴 )  ∧  ( rank ‘ 𝐴 )  ⊆  𝐵 ) ) ) | 
						
							| 27 | 13 26 | bitr4id | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  dom  𝑅1 )  →  ( 𝐵  =  ( rank ‘ 𝐴 )  ↔  ( ¬  𝐴  ∈  ( 𝑅1 ‘ 𝐵 )  ∧  𝐴  ∈  ( 𝑅1 ‘ suc  𝐵 ) ) ) ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝐵  ∈  dom  𝑅1  →  ( 𝐵  =  ( rank ‘ 𝐴 )  ↔  ( ¬  𝐴  ∈  ( 𝑅1 ‘ 𝐵 )  ∧  𝐴  ∈  ( 𝑅1 ‘ suc  𝐵 ) ) ) ) ) | 
						
							| 29 | 4 12 28 | pm5.21ndd | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝐵  =  ( rank ‘ 𝐴 )  ↔  ( ¬  𝐴  ∈  ( 𝑅1 ‘ 𝐵 )  ∧  𝐴  ∈  ( 𝑅1 ‘ suc  𝐵 ) ) ) ) |