| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankr1ag | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  dom  𝑅1 )  →  ( 𝐴  ∈  ( 𝑅1 ‘ 𝐵 )  ↔  ( rank ‘ 𝐴 )  ∈  𝐵 ) ) | 
						
							| 2 | 1 | notbid | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  dom  𝑅1 )  →  ( ¬  𝐴  ∈  ( 𝑅1 ‘ 𝐵 )  ↔  ¬  ( rank ‘ 𝐴 )  ∈  𝐵 ) ) | 
						
							| 3 |  | r1funlim | ⊢ ( Fun  𝑅1  ∧  Lim  dom  𝑅1 ) | 
						
							| 4 | 3 | simpri | ⊢ Lim  dom  𝑅1 | 
						
							| 5 |  | limord | ⊢ ( Lim  dom  𝑅1  →  Ord  dom  𝑅1 ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ Ord  dom  𝑅1 | 
						
							| 7 |  | ordelon | ⊢ ( ( Ord  dom  𝑅1  ∧  𝐵  ∈  dom  𝑅1 )  →  𝐵  ∈  On ) | 
						
							| 8 | 6 7 | mpan | ⊢ ( 𝐵  ∈  dom  𝑅1  →  𝐵  ∈  On ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  dom  𝑅1 )  →  𝐵  ∈  On ) | 
						
							| 10 |  | rankon | ⊢ ( rank ‘ 𝐴 )  ∈  On | 
						
							| 11 |  | ontri1 | ⊢ ( ( 𝐵  ∈  On  ∧  ( rank ‘ 𝐴 )  ∈  On )  →  ( 𝐵  ⊆  ( rank ‘ 𝐴 )  ↔  ¬  ( rank ‘ 𝐴 )  ∈  𝐵 ) ) | 
						
							| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  dom  𝑅1 )  →  ( 𝐵  ⊆  ( rank ‘ 𝐴 )  ↔  ¬  ( rank ‘ 𝐴 )  ∈  𝐵 ) ) | 
						
							| 13 | 2 12 | bitr4d | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  dom  𝑅1 )  →  ( ¬  𝐴  ∈  ( 𝑅1 ‘ 𝐵 )  ↔  𝐵  ⊆  ( rank ‘ 𝐴 ) ) ) |