Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
⊢ ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) |
2 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V |
3 |
2
|
pwid |
⊢ ( 𝑅1 ‘ 𝐴 ) ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) |
4 |
|
r1sucg |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) |
5 |
3 4
|
eleqtrrid |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) |
6 |
|
r1elwf |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) |
8 |
|
rankr1bg |
⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ dom 𝑅1 ) → ( ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ⊆ 𝐴 ) ) |
9 |
7 8
|
mpancom |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ⊆ 𝐴 ) ) |
10 |
1 9
|
mpbii |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ⊆ 𝐴 ) |
11 |
|
rankonid |
⊢ ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ 𝐴 ) = 𝐴 ) |
12 |
11
|
biimpi |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ 𝐴 ) = 𝐴 ) |
13 |
|
onssr1 |
⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
14 |
|
rankssb |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
15 |
7 13 14
|
sylc |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
16 |
12 15
|
eqsstrrd |
⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
17 |
10 16
|
eqssd |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 ) |
18 |
|
id |
⊢ ( ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 → ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 ) |
19 |
|
rankdmr1 |
⊢ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ∈ dom 𝑅1 |
20 |
18 19
|
eqeltrrdi |
⊢ ( ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 → 𝐴 ∈ dom 𝑅1 ) |
21 |
17 20
|
impbii |
⊢ ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 ) |