| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssid | ⊢ ( 𝑅1 ‘ 𝐴 )  ⊆  ( 𝑅1 ‘ 𝐴 ) | 
						
							| 2 |  | fvex | ⊢ ( 𝑅1 ‘ 𝐴 )  ∈  V | 
						
							| 3 | 2 | pwid | ⊢ ( 𝑅1 ‘ 𝐴 )  ∈  𝒫  ( 𝑅1 ‘ 𝐴 ) | 
						
							| 4 |  | r1sucg | ⊢ ( 𝐴  ∈  dom  𝑅1  →  ( 𝑅1 ‘ suc  𝐴 )  =  𝒫  ( 𝑅1 ‘ 𝐴 ) ) | 
						
							| 5 | 3 4 | eleqtrrid | ⊢ ( 𝐴  ∈  dom  𝑅1  →  ( 𝑅1 ‘ 𝐴 )  ∈  ( 𝑅1 ‘ suc  𝐴 ) ) | 
						
							| 6 |  | r1elwf | ⊢ ( ( 𝑅1 ‘ 𝐴 )  ∈  ( 𝑅1 ‘ suc  𝐴 )  →  ( 𝑅1 ‘ 𝐴 )  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝐴  ∈  dom  𝑅1  →  ( 𝑅1 ‘ 𝐴 )  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 8 |  | rankr1bg | ⊢ ( ( ( 𝑅1 ‘ 𝐴 )  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ∈  dom  𝑅1 )  →  ( ( 𝑅1 ‘ 𝐴 )  ⊆  ( 𝑅1 ‘ 𝐴 )  ↔  ( rank ‘ ( 𝑅1 ‘ 𝐴 ) )  ⊆  𝐴 ) ) | 
						
							| 9 | 7 8 | mpancom | ⊢ ( 𝐴  ∈  dom  𝑅1  →  ( ( 𝑅1 ‘ 𝐴 )  ⊆  ( 𝑅1 ‘ 𝐴 )  ↔  ( rank ‘ ( 𝑅1 ‘ 𝐴 ) )  ⊆  𝐴 ) ) | 
						
							| 10 | 1 9 | mpbii | ⊢ ( 𝐴  ∈  dom  𝑅1  →  ( rank ‘ ( 𝑅1 ‘ 𝐴 ) )  ⊆  𝐴 ) | 
						
							| 11 |  | rankonid | ⊢ ( 𝐴  ∈  dom  𝑅1  ↔  ( rank ‘ 𝐴 )  =  𝐴 ) | 
						
							| 12 | 11 | biimpi | ⊢ ( 𝐴  ∈  dom  𝑅1  →  ( rank ‘ 𝐴 )  =  𝐴 ) | 
						
							| 13 |  | onssr1 | ⊢ ( 𝐴  ∈  dom  𝑅1  →  𝐴  ⊆  ( 𝑅1 ‘ 𝐴 ) ) | 
						
							| 14 |  | rankssb | ⊢ ( ( 𝑅1 ‘ 𝐴 )  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝐴  ⊆  ( 𝑅1 ‘ 𝐴 )  →  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ) ) | 
						
							| 15 | 7 13 14 | sylc | ⊢ ( 𝐴  ∈  dom  𝑅1  →  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ) | 
						
							| 16 | 12 15 | eqsstrrd | ⊢ ( 𝐴  ∈  dom  𝑅1  →  𝐴  ⊆  ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ) | 
						
							| 17 | 10 16 | eqssd | ⊢ ( 𝐴  ∈  dom  𝑅1  →  ( rank ‘ ( 𝑅1 ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 18 |  | id | ⊢ ( ( rank ‘ ( 𝑅1 ‘ 𝐴 ) )  =  𝐴  →  ( rank ‘ ( 𝑅1 ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 19 |  | rankdmr1 | ⊢ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) )  ∈  dom  𝑅1 | 
						
							| 20 | 18 19 | eqeltrrdi | ⊢ ( ( rank ‘ ( 𝑅1 ‘ 𝐴 ) )  =  𝐴  →  𝐴  ∈  dom  𝑅1 ) | 
						
							| 21 | 17 20 | impbii | ⊢ ( 𝐴  ∈  dom  𝑅1  ↔  ( rank ‘ ( 𝑅1 ‘ 𝐴 ) )  =  𝐴 ) |