Metamath Proof Explorer
		
		
		
		Description:  The rank of a singleton.  Theorem 15.17(v) of Monk1 p. 112.
       (Contributed by NM, 28-Nov-2003)  (Revised by Mario Carneiro, 17-Nov-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | ranksn.1 | ⊢ 𝐴  ∈  V | 
				
					|  | Assertion | ranksn | ⊢  ( rank ‘ { 𝐴 } )  =  suc  ( rank ‘ 𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ranksn.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | unir1 | ⊢ ∪  ( 𝑅1  “  On )  =  V | 
						
							| 3 | 1 2 | eleqtrri | ⊢ 𝐴  ∈  ∪  ( 𝑅1  “  On ) | 
						
							| 4 |  | ranksnb | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ { 𝐴 } )  =  suc  ( rank ‘ 𝐴 ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( rank ‘ { 𝐴 } )  =  suc  ( rank ‘ 𝐴 ) |