Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( rank ‘ 𝑦 ) = ( rank ‘ 𝐴 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( ( rank ‘ 𝑦 ) ∈ 𝑥 ↔ ( rank ‘ 𝐴 ) ∈ 𝑥 ) ) |
3 |
2
|
ralsng |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ∀ 𝑦 ∈ { 𝐴 } ( rank ‘ 𝑦 ) ∈ 𝑥 ↔ ( rank ‘ 𝐴 ) ∈ 𝑥 ) ) |
4 |
3
|
rabbidv |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ { 𝐴 } ( rank ‘ 𝑦 ) ∈ 𝑥 } = { 𝑥 ∈ On ∣ ( rank ‘ 𝐴 ) ∈ 𝑥 } ) |
5 |
4
|
inteqd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ { 𝐴 } ( rank ‘ 𝑦 ) ∈ 𝑥 } = ∩ { 𝑥 ∈ On ∣ ( rank ‘ 𝐴 ) ∈ 𝑥 } ) |
6 |
|
snwf |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) |
7 |
|
rankval3b |
⊢ ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝐴 } ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ { 𝐴 } ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
8 |
6 7
|
syl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝐴 } ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ { 𝐴 } ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
9 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
10 |
|
onsucmin |
⊢ ( ( rank ‘ 𝐴 ) ∈ On → suc ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ( rank ‘ 𝐴 ) ∈ 𝑥 } ) |
11 |
9 10
|
mp1i |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → suc ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ( rank ‘ 𝐴 ) ∈ 𝑥 } ) |
12 |
5 8 11
|
3eqtr4d |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) ) |