| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑦  =  𝐴  →  ( rank ‘ 𝑦 )  =  ( rank ‘ 𝐴 ) ) | 
						
							| 2 | 1 | eleq1d | ⊢ ( 𝑦  =  𝐴  →  ( ( rank ‘ 𝑦 )  ∈  𝑥  ↔  ( rank ‘ 𝐴 )  ∈  𝑥 ) ) | 
						
							| 3 | 2 | ralsng | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( ∀ 𝑦  ∈  { 𝐴 } ( rank ‘ 𝑦 )  ∈  𝑥  ↔  ( rank ‘ 𝐴 )  ∈  𝑥 ) ) | 
						
							| 4 | 3 | rabbidv | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  { 𝑥  ∈  On  ∣  ∀ 𝑦  ∈  { 𝐴 } ( rank ‘ 𝑦 )  ∈  𝑥 }  =  { 𝑥  ∈  On  ∣  ( rank ‘ 𝐴 )  ∈  𝑥 } ) | 
						
							| 5 | 4 | inteqd | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑦  ∈  { 𝐴 } ( rank ‘ 𝑦 )  ∈  𝑥 }  =  ∩  { 𝑥  ∈  On  ∣  ( rank ‘ 𝐴 )  ∈  𝑥 } ) | 
						
							| 6 |  | snwf | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  { 𝐴 }  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 7 |  | rankval3b | ⊢ ( { 𝐴 }  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ { 𝐴 } )  =  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑦  ∈  { 𝐴 } ( rank ‘ 𝑦 )  ∈  𝑥 } ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ { 𝐴 } )  =  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑦  ∈  { 𝐴 } ( rank ‘ 𝑦 )  ∈  𝑥 } ) | 
						
							| 9 |  | rankon | ⊢ ( rank ‘ 𝐴 )  ∈  On | 
						
							| 10 |  | onsucmin | ⊢ ( ( rank ‘ 𝐴 )  ∈  On  →  suc  ( rank ‘ 𝐴 )  =  ∩  { 𝑥  ∈  On  ∣  ( rank ‘ 𝐴 )  ∈  𝑥 } ) | 
						
							| 11 | 9 10 | mp1i | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  suc  ( rank ‘ 𝐴 )  =  ∩  { 𝑥  ∈  On  ∣  ( rank ‘ 𝐴 )  ∈  𝑥 } ) | 
						
							| 12 | 5 8 11 | 3eqtr4d | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ { 𝐴 } )  =  suc  ( rank ‘ 𝐴 ) ) |