| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ⊆  𝐵 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 2 |  | r1rankidb | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  𝐵  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ⊆  𝐵 )  →  𝐵  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) | 
						
							| 4 | 1 3 | sstrd | ⊢ ( ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ⊆  𝐵 )  →  𝐴  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) | 
						
							| 5 |  | sswf | ⊢ ( ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ⊆  𝐵 )  →  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 6 |  | rankdmr1 | ⊢ ( rank ‘ 𝐵 )  ∈  dom  𝑅1 | 
						
							| 7 |  | rankr1bg | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ( rank ‘ 𝐵 )  ∈  dom  𝑅1 )  →  ( 𝐴  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) )  ↔  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ 𝐵 ) ) ) | 
						
							| 8 | 5 6 7 | sylancl | ⊢ ( ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ⊆  𝐵 )  →  ( 𝐴  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐵 ) )  ↔  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ 𝐵 ) ) ) | 
						
							| 9 | 4 8 | mpbid | ⊢ ( ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ⊆  𝐵 )  →  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ 𝐵 ) ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝐴  ⊆  𝐵  →  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ 𝐵 ) ) ) |