| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankr1b.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | df-suc | ⊢ suc  𝐴  =  ( 𝐴  ∪  { 𝐴 } ) | 
						
							| 3 | 2 | fveq2i | ⊢ ( rank ‘ suc  𝐴 )  =  ( rank ‘ ( 𝐴  ∪  { 𝐴 } ) ) | 
						
							| 4 |  | snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 5 | 1 4 | rankun | ⊢ ( rank ‘ ( 𝐴  ∪  { 𝐴 } ) )  =  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐴 } ) ) | 
						
							| 6 | 1 | ranksn | ⊢ ( rank ‘ { 𝐴 } )  =  suc  ( rank ‘ 𝐴 ) | 
						
							| 7 | 6 | uneq2i | ⊢ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐴 } ) )  =  ( ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐴 ) ) | 
						
							| 8 |  | sssucid | ⊢ ( rank ‘ 𝐴 )  ⊆  suc  ( rank ‘ 𝐴 ) | 
						
							| 9 |  | ssequn1 | ⊢ ( ( rank ‘ 𝐴 )  ⊆  suc  ( rank ‘ 𝐴 )  ↔  ( ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐴 ) )  =  suc  ( rank ‘ 𝐴 ) ) | 
						
							| 10 | 8 9 | mpbi | ⊢ ( ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐴 ) )  =  suc  ( rank ‘ 𝐴 ) | 
						
							| 11 | 7 10 | eqtri | ⊢ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐴 } ) )  =  suc  ( rank ‘ 𝐴 ) | 
						
							| 12 | 5 11 | eqtri | ⊢ ( rank ‘ ( 𝐴  ∪  { 𝐴 } ) )  =  suc  ( rank ‘ 𝐴 ) | 
						
							| 13 | 3 12 | eqtri | ⊢ ( rank ‘ suc  𝐴 )  =  suc  ( rank ‘ 𝐴 ) |