Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Infinity Rank rankun  
				
		 
		
			
		 
		Description:   The rank of the union of two sets.  Theorem 15.17(iii) of Monk1 
       p. 112.  (Contributed by NM , 26-Nov-2003)   (Revised by Mario Carneiro , 17-Nov-2014) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ranksn.1 ⊢  𝐴   ∈  V  
					
						rankun.2 ⊢  𝐵   ∈  V  
				
					Assertion 
					rankun ⊢   ( rank ‘ ( 𝐴   ∪  𝐵  ) )  =  ( ( rank ‘ 𝐴  )  ∪  ( rank ‘ 𝐵  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ranksn.1 ⊢  𝐴   ∈  V  
						
							2 
								
							 
							rankun.2 ⊢  𝐵   ∈  V  
						
							3 
								
							 
							unir1 ⊢  ∪   ( 𝑅1   “  On )  =  V  
						
							4 
								1  3 
							 
							eleqtrri ⊢  𝐴   ∈  ∪   ( 𝑅1   “  On )  
						
							5 
								2  3 
							 
							eleqtrri ⊢  𝐵   ∈  ∪   ( 𝑅1   “  On )  
						
							6 
								
							 
							rankunb ⊢  ( ( 𝐴   ∈  ∪   ( 𝑅1   “  On )  ∧  𝐵   ∈  ∪   ( 𝑅1   “  On ) )  →  ( rank ‘ ( 𝐴   ∪  𝐵  ) )  =  ( ( rank ‘ 𝐴  )  ∪  ( rank ‘ 𝐵  ) ) )  
						
							7 
								4  5  6 
							 
							mp2an ⊢  ( rank ‘ ( 𝐴   ∪  𝐵  ) )  =  ( ( rank ‘ 𝐴  )  ∪  ( rank ‘ 𝐵  ) )