Metamath Proof Explorer


Theorem rankun

Description: The rank of the union of two sets. Theorem 15.17(iii) of Monk1 p. 112. (Contributed by NM, 26-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypotheses ranksn.1 𝐴 ∈ V
rankun.2 𝐵 ∈ V
Assertion rankun ( rank ‘ ( 𝐴𝐵 ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ranksn.1 𝐴 ∈ V
2 rankun.2 𝐵 ∈ V
3 unir1 ( 𝑅1 “ On ) = V
4 1 3 eleqtrri 𝐴 ( 𝑅1 “ On )
5 2 3 eleqtrri 𝐵 ( 𝑅1 “ On )
6 rankunb ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝐵 ( 𝑅1 “ On ) ) → ( rank ‘ ( 𝐴𝐵 ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) )
7 4 5 6 mp2an ( rank ‘ ( 𝐴𝐵 ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) )