| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unwf | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  ↔  ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 2 |  | rankval3b | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ ( 𝐴  ∪  𝐵 ) )  =  ∩  { 𝑦  ∈  On  ∣  ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  𝑦 } ) | 
						
							| 3 | 1 2 | sylbi | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ( 𝐴  ∪  𝐵 ) )  =  ∩  { 𝑦  ∈  On  ∣  ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  𝑦 } ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( 𝑥  ∈  ( rank ‘ ( 𝐴  ∪  𝐵 ) )  ↔  𝑥  ∈  ∩  { 𝑦  ∈  On  ∣  ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  𝑦 } ) ) | 
						
							| 5 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 6 | 5 | elintrab | ⊢ ( 𝑥  ∈  ∩  { 𝑦  ∈  On  ∣  ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  𝑦 }  ↔  ∀ 𝑦  ∈  On ( ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  𝑦  →  𝑥  ∈  𝑦 ) ) | 
						
							| 7 | 4 6 | bitrdi | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( 𝑥  ∈  ( rank ‘ ( 𝐴  ∪  𝐵 ) )  ↔  ∀ 𝑦  ∈  On ( ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  𝑦  →  𝑥  ∈  𝑦 ) ) ) | 
						
							| 8 |  | elun | ⊢ ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 ) ) | 
						
							| 9 |  | rankelb | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑥  ∈  𝐴  →  ( rank ‘ 𝑥 )  ∈  ( rank ‘ 𝐴 ) ) ) | 
						
							| 10 |  | elun1 | ⊢ ( ( rank ‘ 𝑥 )  ∈  ( rank ‘ 𝐴 )  →  ( rank ‘ 𝑥 )  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) | 
						
							| 11 | 9 10 | syl6 | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑥  ∈  𝐴  →  ( rank ‘ 𝑥 )  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 12 |  | rankelb | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑥  ∈  𝐵  →  ( rank ‘ 𝑥 )  ∈  ( rank ‘ 𝐵 ) ) ) | 
						
							| 13 |  | elun2 | ⊢ ( ( rank ‘ 𝑥 )  ∈  ( rank ‘ 𝐵 )  →  ( rank ‘ 𝑥 )  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) | 
						
							| 14 | 12 13 | syl6 | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑥  ∈  𝐵  →  ( rank ‘ 𝑥 )  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 15 | 11 14 | jaao | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 )  →  ( rank ‘ 𝑥 )  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 16 | 8 15 | biimtrid | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  →  ( rank ‘ 𝑥 )  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 17 | 16 | ralrimiv | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) | 
						
							| 18 |  | rankon | ⊢ ( rank ‘ 𝐴 )  ∈  On | 
						
							| 19 |  | rankon | ⊢ ( rank ‘ 𝐵 )  ∈  On | 
						
							| 20 | 18 19 | onun2i | ⊢ ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  ∈  On | 
						
							| 21 |  | eleq2 | ⊢ ( 𝑦  =  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  →  ( ( rank ‘ 𝑥 )  ∈  𝑦  ↔  ( rank ‘ 𝑥 )  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 22 | 21 | ralbidv | ⊢ ( 𝑦  =  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  →  ( ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  𝑦  ↔  ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 23 |  | eleq2 | ⊢ ( 𝑦  =  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  →  ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 24 | 22 23 | imbi12d | ⊢ ( 𝑦  =  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  →  ( ( ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  𝑦  →  𝑥  ∈  𝑦 )  ↔  ( ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  →  𝑥  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) ) | 
						
							| 25 | 24 | rspcv | ⊢ ( ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  ∈  On  →  ( ∀ 𝑦  ∈  On ( ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  𝑦  →  𝑥  ∈  𝑦 )  →  ( ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  →  𝑥  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) ) | 
						
							| 26 | 20 25 | ax-mp | ⊢ ( ∀ 𝑦  ∈  On ( ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  𝑦  →  𝑥  ∈  𝑦 )  →  ( ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  →  𝑥  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 27 | 17 26 | syl5com | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( ∀ 𝑦  ∈  On ( ∀ 𝑥  ∈  ( 𝐴  ∪  𝐵 ) ( rank ‘ 𝑥 )  ∈  𝑦  →  𝑥  ∈  𝑦 )  →  𝑥  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 28 | 7 27 | sylbid | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( 𝑥  ∈  ( rank ‘ ( 𝐴  ∪  𝐵 ) )  →  𝑥  ∈  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) ) | 
						
							| 29 | 28 | ssrdv | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ( 𝐴  ∪  𝐵 ) )  ⊆  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) | 
						
							| 30 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 31 |  | rankssb | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝐴  ⊆  ( 𝐴  ∪  𝐵 )  →  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ ( 𝐴  ∪  𝐵 ) ) ) ) | 
						
							| 32 | 30 31 | mpi | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 33 |  | ssun2 | ⊢ 𝐵  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 34 |  | rankssb | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝐵  ⊆  ( 𝐴  ∪  𝐵 )  →  ( rank ‘ 𝐵 )  ⊆  ( rank ‘ ( 𝐴  ∪  𝐵 ) ) ) ) | 
						
							| 35 | 33 34 | mpi | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ 𝐵 )  ⊆  ( rank ‘ ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 36 | 32 35 | unssd | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  ∪  ( 𝑅1  “  On )  →  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  ⊆  ( rank ‘ ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 37 | 1 36 | sylbi | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) )  ⊆  ( rank ‘ ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 38 | 29 37 | eqssd | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ 𝐵 ) ) ) |