| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unieq | ⊢ ( 𝑥  =  𝐴  →  ∪  𝑥  =  ∪  𝐴 ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( 𝑥  =  𝐴  →  ( rank ‘ ∪  𝑥 )  =  ( rank ‘ ∪  𝐴 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( rank ‘ 𝑥 )  =  ( rank ‘ 𝐴 ) ) | 
						
							| 4 | 3 | unieqd | ⊢ ( 𝑥  =  𝐴  →  ∪  ( rank ‘ 𝑥 )  =  ∪  ( rank ‘ 𝐴 ) ) | 
						
							| 5 | 2 4 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( rank ‘ ∪  𝑥 )  =  ∪  ( rank ‘ 𝑥 )  ↔  ( rank ‘ ∪  𝐴 )  =  ∪  ( rank ‘ 𝐴 ) ) ) | 
						
							| 6 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 7 | 6 | rankuni2 | ⊢ ( rank ‘ ∪  𝑥 )  =  ∪  𝑧  ∈  𝑥 ( rank ‘ 𝑧 ) | 
						
							| 8 |  | fvex | ⊢ ( rank ‘ 𝑧 )  ∈  V | 
						
							| 9 | 8 | dfiun2 | ⊢ ∪  𝑧  ∈  𝑥 ( rank ‘ 𝑧 )  =  ∪  { 𝑦  ∣  ∃ 𝑧  ∈  𝑥 𝑦  =  ( rank ‘ 𝑧 ) } | 
						
							| 10 | 7 9 | eqtri | ⊢ ( rank ‘ ∪  𝑥 )  =  ∪  { 𝑦  ∣  ∃ 𝑧  ∈  𝑥 𝑦  =  ( rank ‘ 𝑧 ) } | 
						
							| 11 |  | df-rex | ⊢ ( ∃ 𝑧  ∈  𝑥 𝑦  =  ( rank ‘ 𝑧 )  ↔  ∃ 𝑧 ( 𝑧  ∈  𝑥  ∧  𝑦  =  ( rank ‘ 𝑧 ) ) ) | 
						
							| 12 | 6 | rankel | ⊢ ( 𝑧  ∈  𝑥  →  ( rank ‘ 𝑧 )  ∈  ( rank ‘ 𝑥 ) ) | 
						
							| 13 | 12 | anim1i | ⊢ ( ( 𝑧  ∈  𝑥  ∧  𝑦  =  ( rank ‘ 𝑧 ) )  →  ( ( rank ‘ 𝑧 )  ∈  ( rank ‘ 𝑥 )  ∧  𝑦  =  ( rank ‘ 𝑧 ) ) ) | 
						
							| 14 | 13 | eximi | ⊢ ( ∃ 𝑧 ( 𝑧  ∈  𝑥  ∧  𝑦  =  ( rank ‘ 𝑧 ) )  →  ∃ 𝑧 ( ( rank ‘ 𝑧 )  ∈  ( rank ‘ 𝑥 )  ∧  𝑦  =  ( rank ‘ 𝑧 ) ) ) | 
						
							| 15 |  | 19.42v | ⊢ ( ∃ 𝑧 ( 𝑦  ∈  ( rank ‘ 𝑥 )  ∧  𝑦  =  ( rank ‘ 𝑧 ) )  ↔  ( 𝑦  ∈  ( rank ‘ 𝑥 )  ∧  ∃ 𝑧 𝑦  =  ( rank ‘ 𝑧 ) ) ) | 
						
							| 16 |  | eleq1 | ⊢ ( 𝑦  =  ( rank ‘ 𝑧 )  →  ( 𝑦  ∈  ( rank ‘ 𝑥 )  ↔  ( rank ‘ 𝑧 )  ∈  ( rank ‘ 𝑥 ) ) ) | 
						
							| 17 | 16 | pm5.32ri | ⊢ ( ( 𝑦  ∈  ( rank ‘ 𝑥 )  ∧  𝑦  =  ( rank ‘ 𝑧 ) )  ↔  ( ( rank ‘ 𝑧 )  ∈  ( rank ‘ 𝑥 )  ∧  𝑦  =  ( rank ‘ 𝑧 ) ) ) | 
						
							| 18 | 17 | exbii | ⊢ ( ∃ 𝑧 ( 𝑦  ∈  ( rank ‘ 𝑥 )  ∧  𝑦  =  ( rank ‘ 𝑧 ) )  ↔  ∃ 𝑧 ( ( rank ‘ 𝑧 )  ∈  ( rank ‘ 𝑥 )  ∧  𝑦  =  ( rank ‘ 𝑧 ) ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝑦  ∈  ( rank ‘ 𝑥 )  ∧  ∃ 𝑧 𝑦  =  ( rank ‘ 𝑧 ) )  →  𝑦  ∈  ( rank ‘ 𝑥 ) ) | 
						
							| 20 |  | rankon | ⊢ ( rank ‘ 𝑥 )  ∈  On | 
						
							| 21 | 20 | oneli | ⊢ ( 𝑦  ∈  ( rank ‘ 𝑥 )  →  𝑦  ∈  On ) | 
						
							| 22 |  | r1fnon | ⊢ 𝑅1  Fn  On | 
						
							| 23 |  | fndm | ⊢ ( 𝑅1  Fn  On  →  dom  𝑅1  =  On ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ dom  𝑅1  =  On | 
						
							| 25 | 21 24 | eleqtrrdi | ⊢ ( 𝑦  ∈  ( rank ‘ 𝑥 )  →  𝑦  ∈  dom  𝑅1 ) | 
						
							| 26 |  | rankr1id | ⊢ ( 𝑦  ∈  dom  𝑅1  ↔  ( rank ‘ ( 𝑅1 ‘ 𝑦 ) )  =  𝑦 ) | 
						
							| 27 | 25 26 | sylib | ⊢ ( 𝑦  ∈  ( rank ‘ 𝑥 )  →  ( rank ‘ ( 𝑅1 ‘ 𝑦 ) )  =  𝑦 ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( 𝑦  ∈  ( rank ‘ 𝑥 )  →  𝑦  =  ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | 
						
							| 29 |  | fvex | ⊢ ( 𝑅1 ‘ 𝑦 )  ∈  V | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑅1 ‘ 𝑦 )  →  ( rank ‘ 𝑧 )  =  ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | 
						
							| 31 | 30 | eqeq2d | ⊢ ( 𝑧  =  ( 𝑅1 ‘ 𝑦 )  →  ( 𝑦  =  ( rank ‘ 𝑧 )  ↔  𝑦  =  ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) | 
						
							| 32 | 29 31 | spcev | ⊢ ( 𝑦  =  ( rank ‘ ( 𝑅1 ‘ 𝑦 ) )  →  ∃ 𝑧 𝑦  =  ( rank ‘ 𝑧 ) ) | 
						
							| 33 | 28 32 | syl | ⊢ ( 𝑦  ∈  ( rank ‘ 𝑥 )  →  ∃ 𝑧 𝑦  =  ( rank ‘ 𝑧 ) ) | 
						
							| 34 | 33 | ancli | ⊢ ( 𝑦  ∈  ( rank ‘ 𝑥 )  →  ( 𝑦  ∈  ( rank ‘ 𝑥 )  ∧  ∃ 𝑧 𝑦  =  ( rank ‘ 𝑧 ) ) ) | 
						
							| 35 | 19 34 | impbii | ⊢ ( ( 𝑦  ∈  ( rank ‘ 𝑥 )  ∧  ∃ 𝑧 𝑦  =  ( rank ‘ 𝑧 ) )  ↔  𝑦  ∈  ( rank ‘ 𝑥 ) ) | 
						
							| 36 | 15 18 35 | 3bitr3i | ⊢ ( ∃ 𝑧 ( ( rank ‘ 𝑧 )  ∈  ( rank ‘ 𝑥 )  ∧  𝑦  =  ( rank ‘ 𝑧 ) )  ↔  𝑦  ∈  ( rank ‘ 𝑥 ) ) | 
						
							| 37 | 14 36 | sylib | ⊢ ( ∃ 𝑧 ( 𝑧  ∈  𝑥  ∧  𝑦  =  ( rank ‘ 𝑧 ) )  →  𝑦  ∈  ( rank ‘ 𝑥 ) ) | 
						
							| 38 | 11 37 | sylbi | ⊢ ( ∃ 𝑧  ∈  𝑥 𝑦  =  ( rank ‘ 𝑧 )  →  𝑦  ∈  ( rank ‘ 𝑥 ) ) | 
						
							| 39 | 38 | abssi | ⊢ { 𝑦  ∣  ∃ 𝑧  ∈  𝑥 𝑦  =  ( rank ‘ 𝑧 ) }  ⊆  ( rank ‘ 𝑥 ) | 
						
							| 40 | 39 | unissi | ⊢ ∪  { 𝑦  ∣  ∃ 𝑧  ∈  𝑥 𝑦  =  ( rank ‘ 𝑧 ) }  ⊆  ∪  ( rank ‘ 𝑥 ) | 
						
							| 41 | 10 40 | eqsstri | ⊢ ( rank ‘ ∪  𝑥 )  ⊆  ∪  ( rank ‘ 𝑥 ) | 
						
							| 42 |  | pwuni | ⊢ 𝑥  ⊆  𝒫  ∪  𝑥 | 
						
							| 43 |  | vuniex | ⊢ ∪  𝑥  ∈  V | 
						
							| 44 | 43 | pwex | ⊢ 𝒫  ∪  𝑥  ∈  V | 
						
							| 45 | 44 | rankss | ⊢ ( 𝑥  ⊆  𝒫  ∪  𝑥  →  ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝒫  ∪  𝑥 ) ) | 
						
							| 46 | 42 45 | ax-mp | ⊢ ( rank ‘ 𝑥 )  ⊆  ( rank ‘ 𝒫  ∪  𝑥 ) | 
						
							| 47 | 43 | rankpw | ⊢ ( rank ‘ 𝒫  ∪  𝑥 )  =  suc  ( rank ‘ ∪  𝑥 ) | 
						
							| 48 | 46 47 | sseqtri | ⊢ ( rank ‘ 𝑥 )  ⊆  suc  ( rank ‘ ∪  𝑥 ) | 
						
							| 49 | 48 | unissi | ⊢ ∪  ( rank ‘ 𝑥 )  ⊆  ∪  suc  ( rank ‘ ∪  𝑥 ) | 
						
							| 50 |  | rankon | ⊢ ( rank ‘ ∪  𝑥 )  ∈  On | 
						
							| 51 | 50 | onunisuci | ⊢ ∪  suc  ( rank ‘ ∪  𝑥 )  =  ( rank ‘ ∪  𝑥 ) | 
						
							| 52 | 49 51 | sseqtri | ⊢ ∪  ( rank ‘ 𝑥 )  ⊆  ( rank ‘ ∪  𝑥 ) | 
						
							| 53 | 41 52 | eqssi | ⊢ ( rank ‘ ∪  𝑥 )  =  ∪  ( rank ‘ 𝑥 ) | 
						
							| 54 | 5 53 | vtoclg | ⊢ ( 𝐴  ∈  V  →  ( rank ‘ ∪  𝐴 )  =  ∪  ( rank ‘ 𝐴 ) ) | 
						
							| 55 |  | uniexb | ⊢ ( 𝐴  ∈  V  ↔  ∪  𝐴  ∈  V ) | 
						
							| 56 |  | fvprc | ⊢ ( ¬  ∪  𝐴  ∈  V  →  ( rank ‘ ∪  𝐴 )  =  ∅ ) | 
						
							| 57 | 55 56 | sylnbi | ⊢ ( ¬  𝐴  ∈  V  →  ( rank ‘ ∪  𝐴 )  =  ∅ ) | 
						
							| 58 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 59 | 57 58 | eqtr4di | ⊢ ( ¬  𝐴  ∈  V  →  ( rank ‘ ∪  𝐴 )  =  ∪  ∅ ) | 
						
							| 60 |  | fvprc | ⊢ ( ¬  𝐴  ∈  V  →  ( rank ‘ 𝐴 )  =  ∅ ) | 
						
							| 61 | 60 | unieqd | ⊢ ( ¬  𝐴  ∈  V  →  ∪  ( rank ‘ 𝐴 )  =  ∪  ∅ ) | 
						
							| 62 | 59 61 | eqtr4d | ⊢ ( ¬  𝐴  ∈  V  →  ( rank ‘ ∪  𝐴 )  =  ∪  ( rank ‘ 𝐴 ) ) | 
						
							| 63 | 54 62 | pm2.61i | ⊢ ( rank ‘ ∪  𝐴 )  =  ∪  ( rank ‘ 𝐴 ) |