Step |
Hyp |
Ref |
Expression |
1 |
|
uniwf |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
2 |
|
rankval3b |
⊢ ( ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ ∪ 𝐴 ) = ∩ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ ∪ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑧 } ) |
3 |
1 2
|
sylbi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ ∪ 𝐴 ) = ∩ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ ∪ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑧 } ) |
4 |
|
eleq2 |
⊢ ( 𝑧 = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) → ( ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ ( rank ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) ) |
5 |
4
|
ralbidv |
⊢ ( 𝑧 = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) → ( ∀ 𝑦 ∈ ∪ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑦 ∈ ∪ 𝐴 ( rank ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) ) |
6 |
|
iuneq1 |
⊢ ( 𝑦 = 𝐴 → ∪ 𝑥 ∈ 𝑦 ( rank ‘ 𝑥 ) = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( ∪ 𝑥 ∈ 𝑦 ( rank ‘ 𝑥 ) ∈ On ↔ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ On ) ) |
8 |
|
vex |
⊢ 𝑦 ∈ V |
9 |
|
rankon |
⊢ ( rank ‘ 𝑥 ) ∈ On |
10 |
9
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝑦 ( rank ‘ 𝑥 ) ∈ On |
11 |
|
iunon |
⊢ ( ( 𝑦 ∈ V ∧ ∀ 𝑥 ∈ 𝑦 ( rank ‘ 𝑥 ) ∈ On ) → ∪ 𝑥 ∈ 𝑦 ( rank ‘ 𝑥 ) ∈ On ) |
12 |
8 10 11
|
mp2an |
⊢ ∪ 𝑥 ∈ 𝑦 ( rank ‘ 𝑥 ) ∈ On |
13 |
7 12
|
vtoclg |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ On ) |
14 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) |
15 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ∈ ∪ ( 𝑅1 “ On ) |
16 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) |
17 |
16
|
nfel2 |
⊢ Ⅎ 𝑥 ( rank ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) |
18 |
|
r1elssi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |
19 |
18
|
sseld |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) ) |
20 |
|
rankelb |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑦 ∈ 𝑥 → ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝑥 ) ) ) |
21 |
19 20
|
syl6 |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝑥 ) ) ) ) |
22 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) |
23 |
22
|
sseld |
⊢ ( 𝑥 ∈ 𝐴 → ( ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝑥 ) → ( rank ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) ) |
24 |
23
|
a1i |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝐴 → ( ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝑥 ) → ( rank ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) ) ) |
25 |
21 24
|
syldd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → ( rank ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) ) ) |
26 |
15 17 25
|
rexlimd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → ( rank ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) ) |
27 |
14 26
|
syl5bi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑦 ∈ ∪ 𝐴 → ( rank ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) ) |
28 |
27
|
ralrimiv |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∀ 𝑦 ∈ ∪ 𝐴 ( rank ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) |
29 |
5 13 28
|
elrabd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ ∪ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑧 } ) |
30 |
|
intss1 |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ ∪ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑧 } → ∩ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ ∪ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑧 } ⊆ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) |
31 |
29 30
|
syl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∩ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ ∪ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑧 } ⊆ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) |
32 |
3 31
|
eqsstrd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ ∪ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) |
33 |
1
|
biimpi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
34 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴 ) |
35 |
|
rankssb |
⊢ ( ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ⊆ ∪ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) ) |
36 |
33 34 35
|
syl2im |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) ) |
37 |
36
|
ralrimiv |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) |
38 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) |
39 |
37 38
|
sylibr |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) |
40 |
32 39
|
eqssd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ ∪ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ) |