| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uniwf | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ↔  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 2 |  | rankval3b | ⊢ ( ∪  𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ ∪  𝐴 )  =  ∩  { 𝑧  ∈  On  ∣  ∀ 𝑦  ∈  ∪  𝐴 ( rank ‘ 𝑦 )  ∈  𝑧 } ) | 
						
							| 3 | 1 2 | sylbi | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ ∪  𝐴 )  =  ∩  { 𝑧  ∈  On  ∣  ∀ 𝑦  ∈  ∪  𝐴 ( rank ‘ 𝑦 )  ∈  𝑧 } ) | 
						
							| 4 |  | eleq2 | ⊢ ( 𝑧  =  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  →  ( ( rank ‘ 𝑦 )  ∈  𝑧  ↔  ( rank ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) ) | 
						
							| 5 | 4 | ralbidv | ⊢ ( 𝑧  =  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  →  ( ∀ 𝑦  ∈  ∪  𝐴 ( rank ‘ 𝑦 )  ∈  𝑧  ↔  ∀ 𝑦  ∈  ∪  𝐴 ( rank ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) ) | 
						
							| 6 |  | iuneq1 | ⊢ ( 𝑦  =  𝐴  →  ∪  𝑥  ∈  𝑦 ( rank ‘ 𝑥 )  =  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝑦  =  𝐴  →  ( ∪  𝑥  ∈  𝑦 ( rank ‘ 𝑥 )  ∈  On  ↔  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ∈  On ) ) | 
						
							| 8 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 9 |  | rankon | ⊢ ( rank ‘ 𝑥 )  ∈  On | 
						
							| 10 | 9 | rgenw | ⊢ ∀ 𝑥  ∈  𝑦 ( rank ‘ 𝑥 )  ∈  On | 
						
							| 11 |  | iunon | ⊢ ( ( 𝑦  ∈  V  ∧  ∀ 𝑥  ∈  𝑦 ( rank ‘ 𝑥 )  ∈  On )  →  ∪  𝑥  ∈  𝑦 ( rank ‘ 𝑥 )  ∈  On ) | 
						
							| 12 | 8 10 11 | mp2an | ⊢ ∪  𝑥  ∈  𝑦 ( rank ‘ 𝑥 )  ∈  On | 
						
							| 13 | 7 12 | vtoclg | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ∈  On ) | 
						
							| 14 |  | eluni2 | ⊢ ( 𝑦  ∈  ∪  𝐴  ↔  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝑥 ) | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑥 𝐴  ∈  ∪  ( 𝑅1  “  On ) | 
						
							| 16 |  | nfiu1 | ⊢ Ⅎ 𝑥 ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) | 
						
							| 17 | 16 | nfel2 | ⊢ Ⅎ 𝑥 ( rank ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) | 
						
							| 18 |  | r1elssi | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝐴  ⊆  ∪  ( 𝑅1  “  On ) ) | 
						
							| 19 | 18 | sseld | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  ∪  ( 𝑅1  “  On ) ) ) | 
						
							| 20 |  | rankelb | ⊢ ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑦  ∈  𝑥  →  ( rank ‘ 𝑦 )  ∈  ( rank ‘ 𝑥 ) ) ) | 
						
							| 21 | 19 20 | syl6 | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  𝑥  →  ( rank ‘ 𝑦 )  ∈  ( rank ‘ 𝑥 ) ) ) ) | 
						
							| 22 |  | ssiun2 | ⊢ ( 𝑥  ∈  𝐴  →  ( rank ‘ 𝑥 )  ⊆  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) | 
						
							| 23 | 22 | sseld | ⊢ ( 𝑥  ∈  𝐴  →  ( ( rank ‘ 𝑦 )  ∈  ( rank ‘ 𝑥 )  →  ( rank ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) ) | 
						
							| 24 | 23 | a1i | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑥  ∈  𝐴  →  ( ( rank ‘ 𝑦 )  ∈  ( rank ‘ 𝑥 )  →  ( rank ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) ) ) | 
						
							| 25 | 21 24 | syldd | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  𝑥  →  ( rank ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) ) ) | 
						
							| 26 | 15 17 25 | rexlimd | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝑥  →  ( rank ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) ) | 
						
							| 27 | 14 26 | biimtrid | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑦  ∈  ∪  𝐴  →  ( rank ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) ) | 
						
							| 28 | 27 | ralrimiv | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∀ 𝑦  ∈  ∪  𝐴 ( rank ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) | 
						
							| 29 | 5 13 28 | elrabd | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ∈  { 𝑧  ∈  On  ∣  ∀ 𝑦  ∈  ∪  𝐴 ( rank ‘ 𝑦 )  ∈  𝑧 } ) | 
						
							| 30 |  | intss1 | ⊢ ( ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ∈  { 𝑧  ∈  On  ∣  ∀ 𝑦  ∈  ∪  𝐴 ( rank ‘ 𝑦 )  ∈  𝑧 }  →  ∩  { 𝑧  ∈  On  ∣  ∀ 𝑦  ∈  ∪  𝐴 ( rank ‘ 𝑦 )  ∈  𝑧 }  ⊆  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∩  { 𝑧  ∈  On  ∣  ∀ 𝑦  ∈  ∪  𝐴 ( rank ‘ 𝑦 )  ∈  𝑧 }  ⊆  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) | 
						
							| 32 | 3 31 | eqsstrd | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ ∪  𝐴 )  ⊆  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) | 
						
							| 33 | 1 | biimpi | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 34 |  | elssuni | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ⊆  ∪  𝐴 ) | 
						
							| 35 |  | rankssb | ⊢ ( ∪  𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑥  ⊆  ∪  𝐴  →  ( rank ‘ 𝑥 )  ⊆  ( rank ‘ ∪  𝐴 ) ) ) | 
						
							| 36 | 33 34 35 | syl2im | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑥  ∈  𝐴  →  ( rank ‘ 𝑥 )  ⊆  ( rank ‘ ∪  𝐴 ) ) ) | 
						
							| 37 | 36 | ralrimiv | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∀ 𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ ∪  𝐴 ) ) | 
						
							| 38 |  | iunss | ⊢ ( ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ ∪  𝐴 )  ↔  ∀ 𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ ∪  𝐴 ) ) | 
						
							| 39 | 37 38 | sylibr | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  ( rank ‘ ∪  𝐴 ) ) | 
						
							| 40 | 32 39 | eqssd | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ ∪  𝐴 )  =  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) ) |