Metamath Proof Explorer


Theorem rankval

Description: Value of the rank function. Definition 9.14 of TakeutiZaring p. 79 (proved as a theorem from our definition). (Contributed by NM, 24-Sep-2003) (Revised by Mario Carneiro, 10-Sep-2013)

Ref Expression
Hypothesis rankval.1 𝐴 ∈ V
Assertion rankval ( rank ‘ 𝐴 ) = { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) }

Proof

Step Hyp Ref Expression
1 rankval.1 𝐴 ∈ V
2 unir1 ( 𝑅1 “ On ) = V
3 1 2 eleqtrri 𝐴 ( 𝑅1 “ On )
4 rankvalb ( 𝐴 ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } )
5 3 4 ax-mp ( rank ‘ 𝐴 ) = { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) }