| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankvalg |
⊢ ( 𝐴 ∈ 𝐵 → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| 2 |
|
r1suc |
⊢ ( 𝑥 ∈ On → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 3 |
2
|
eleq2d |
⊢ ( 𝑥 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) ) |
| 4 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝑥 ) ∈ V |
| 5 |
4
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 6 |
3 5
|
bitrdi |
⊢ ( 𝑥 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 7 |
6
|
rabbiia |
⊢ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } = { 𝑥 ∈ On ∣ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) } |
| 8 |
7
|
inteqi |
⊢ ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) } |
| 9 |
1 8
|
eqtrdi |
⊢ ( 𝐴 ∈ 𝐵 → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) } ) |