| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankon | ⊢ ( rank ‘ 𝐴 )  ∈  On | 
						
							| 2 |  | simprl | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 ) )  →  𝑥  ∈  On ) | 
						
							| 3 |  | ontri1 | ⊢ ( ( ( rank ‘ 𝐴 )  ∈  On  ∧  𝑥  ∈  On )  →  ( ( rank ‘ 𝐴 )  ⊆  𝑥  ↔  ¬  𝑥  ∈  ( rank ‘ 𝐴 ) ) ) | 
						
							| 4 | 1 2 3 | sylancr | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 ) )  →  ( ( rank ‘ 𝐴 )  ⊆  𝑥  ↔  ¬  𝑥  ∈  ( rank ‘ 𝐴 ) ) ) | 
						
							| 5 | 4 | con2bid | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 ) )  →  ( 𝑥  ∈  ( rank ‘ 𝐴 )  ↔  ¬  ( rank ‘ 𝐴 )  ⊆  𝑥 ) ) | 
						
							| 6 |  | r1elssi | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝐴  ⊆  ∪  ( 𝑅1  “  On ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝑥  ∈  ( rank ‘ 𝐴 ) )  →  𝐴  ⊆  ∪  ( 𝑅1  “  On ) ) | 
						
							| 8 | 7 | sselda | ⊢ ( ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝑥  ∈  ( rank ‘ 𝐴 ) )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 9 |  | rankdmr1 | ⊢ ( rank ‘ 𝐴 )  ∈  dom  𝑅1 | 
						
							| 10 |  | r1funlim | ⊢ ( Fun  𝑅1  ∧  Lim  dom  𝑅1 ) | 
						
							| 11 | 10 | simpri | ⊢ Lim  dom  𝑅1 | 
						
							| 12 |  | limord | ⊢ ( Lim  dom  𝑅1  →  Ord  dom  𝑅1 ) | 
						
							| 13 |  | ordtr1 | ⊢ ( Ord  dom  𝑅1  →  ( ( 𝑥  ∈  ( rank ‘ 𝐴 )  ∧  ( rank ‘ 𝐴 )  ∈  dom  𝑅1 )  →  𝑥  ∈  dom  𝑅1 ) ) | 
						
							| 14 | 11 12 13 | mp2b | ⊢ ( ( 𝑥  ∈  ( rank ‘ 𝐴 )  ∧  ( rank ‘ 𝐴 )  ∈  dom  𝑅1 )  →  𝑥  ∈  dom  𝑅1 ) | 
						
							| 15 | 9 14 | mpan2 | ⊢ ( 𝑥  ∈  ( rank ‘ 𝐴 )  →  𝑥  ∈  dom  𝑅1 ) | 
						
							| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝑥  ∈  ( rank ‘ 𝐴 ) )  ∧  𝑦  ∈  𝐴 )  →  𝑥  ∈  dom  𝑅1 ) | 
						
							| 17 |  | rankr1ag | ⊢ ( ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ∧  𝑥  ∈  dom  𝑅1 )  →  ( 𝑦  ∈  ( 𝑅1 ‘ 𝑥 )  ↔  ( rank ‘ 𝑦 )  ∈  𝑥 ) ) | 
						
							| 18 | 8 16 17 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝑥  ∈  ( rank ‘ 𝐴 ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑦  ∈  ( 𝑅1 ‘ 𝑥 )  ↔  ( rank ‘ 𝑦 )  ∈  𝑥 ) ) | 
						
							| 19 | 18 | ralbidva | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝑥  ∈  ( rank ‘ 𝐴 ) )  →  ( ∀ 𝑦  ∈  𝐴 𝑦  ∈  ( 𝑅1 ‘ 𝑥 )  ↔  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 ) ) | 
						
							| 20 | 19 | biimpar | ⊢ ( ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝑥  ∈  ( rank ‘ 𝐴 ) )  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 )  →  ∀ 𝑦  ∈  𝐴 𝑦  ∈  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 21 | 20 | an32s | ⊢ ( ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 )  ∧  𝑥  ∈  ( rank ‘ 𝐴 ) )  →  ∀ 𝑦  ∈  𝐴 𝑦  ∈  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 22 |  | dfss3 | ⊢ ( 𝐴  ⊆  ( 𝑅1 ‘ 𝑥 )  ↔  ∀ 𝑦  ∈  𝐴 𝑦  ∈  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 23 | 21 22 | sylibr | ⊢ ( ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 )  ∧  𝑥  ∈  ( rank ‘ 𝐴 ) )  →  𝐴  ⊆  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 24 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 )  ∧  𝑥  ∈  ( rank ‘ 𝐴 ) )  →  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 25 | 15 | adantl | ⊢ ( ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 )  ∧  𝑥  ∈  ( rank ‘ 𝐴 ) )  →  𝑥  ∈  dom  𝑅1 ) | 
						
							| 26 |  | rankr1bg | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝑥  ∈  dom  𝑅1 )  →  ( 𝐴  ⊆  ( 𝑅1 ‘ 𝑥 )  ↔  ( rank ‘ 𝐴 )  ⊆  𝑥 ) ) | 
						
							| 27 | 24 25 26 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 )  ∧  𝑥  ∈  ( rank ‘ 𝐴 ) )  →  ( 𝐴  ⊆  ( 𝑅1 ‘ 𝑥 )  ↔  ( rank ‘ 𝐴 )  ⊆  𝑥 ) ) | 
						
							| 28 | 23 27 | mpbid | ⊢ ( ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 )  ∧  𝑥  ∈  ( rank ‘ 𝐴 ) )  →  ( rank ‘ 𝐴 )  ⊆  𝑥 ) | 
						
							| 29 | 28 | ex | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 )  →  ( 𝑥  ∈  ( rank ‘ 𝐴 )  →  ( rank ‘ 𝐴 )  ⊆  𝑥 ) ) | 
						
							| 30 | 29 | adantrl | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 ) )  →  ( 𝑥  ∈  ( rank ‘ 𝐴 )  →  ( rank ‘ 𝐴 )  ⊆  𝑥 ) ) | 
						
							| 31 | 5 30 | sylbird | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 ) )  →  ( ¬  ( rank ‘ 𝐴 )  ⊆  𝑥  →  ( rank ‘ 𝐴 )  ⊆  𝑥 ) ) | 
						
							| 32 | 31 | pm2.18d | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 ) )  →  ( rank ‘ 𝐴 )  ⊆  𝑥 ) | 
						
							| 33 | 32 | ex | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 )  →  ( rank ‘ 𝐴 )  ⊆  𝑥 ) ) | 
						
							| 34 | 33 | alrimiv | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∀ 𝑥 ( ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 )  →  ( rank ‘ 𝐴 )  ⊆  𝑥 ) ) | 
						
							| 35 |  | ssintab | ⊢ ( ( rank ‘ 𝐴 )  ⊆  ∩  { 𝑥  ∣  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 ) }  ↔  ∀ 𝑥 ( ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 )  →  ( rank ‘ 𝐴 )  ⊆  𝑥 ) ) | 
						
							| 36 | 34 35 | sylibr | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ 𝐴 )  ⊆  ∩  { 𝑥  ∣  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 ) } ) | 
						
							| 37 |  | df-rab | ⊢ { 𝑥  ∈  On  ∣  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 }  =  { 𝑥  ∣  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 ) } | 
						
							| 38 | 37 | inteqi | ⊢ ∩  { 𝑥  ∈  On  ∣  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 }  =  ∩  { 𝑥  ∣  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 ) } | 
						
							| 39 | 36 38 | sseqtrrdi | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ 𝐴 )  ⊆  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 } ) | 
						
							| 40 |  | rankelb | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( 𝑦  ∈  𝐴  →  ( rank ‘ 𝑦 )  ∈  ( rank ‘ 𝐴 ) ) ) | 
						
							| 41 | 40 | ralrimiv | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  ( rank ‘ 𝐴 ) ) | 
						
							| 42 |  | eleq2 | ⊢ ( 𝑥  =  ( rank ‘ 𝐴 )  →  ( ( rank ‘ 𝑦 )  ∈  𝑥  ↔  ( rank ‘ 𝑦 )  ∈  ( rank ‘ 𝐴 ) ) ) | 
						
							| 43 | 42 | ralbidv | ⊢ ( 𝑥  =  ( rank ‘ 𝐴 )  →  ( ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥  ↔  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  ( rank ‘ 𝐴 ) ) ) | 
						
							| 44 | 43 | onintss | ⊢ ( ( rank ‘ 𝐴 )  ∈  On  →  ( ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  ( rank ‘ 𝐴 )  →  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 }  ⊆  ( rank ‘ 𝐴 ) ) ) | 
						
							| 45 | 1 41 44 | mpsyl | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 }  ⊆  ( rank ‘ 𝐴 ) ) | 
						
							| 46 | 39 45 | eqssd | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ 𝐴 )  =  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑦  ∈  𝐴 ( rank ‘ 𝑦 )  ∈  𝑥 } ) |