Step |
Hyp |
Ref |
Expression |
1 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
2 |
|
simprl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) → 𝑥 ∈ On ) |
3 |
|
ontri1 |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ 𝑥 ∈ On ) → ( ( rank ‘ 𝐴 ) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ) |
4 |
1 2 3
|
sylancr |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) → ( ( rank ‘ 𝐴 ) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ) |
5 |
4
|
con2bid |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) → ( 𝑥 ∈ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
6 |
|
r1elssi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |
8 |
7
|
sselda |
⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) |
9 |
|
rankdmr1 |
⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 |
10 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
11 |
10
|
simpri |
⊢ Lim dom 𝑅1 |
12 |
|
limord |
⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) |
13 |
|
ordtr1 |
⊢ ( Ord dom 𝑅1 → ( ( 𝑥 ∈ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) ) |
14 |
11 12 13
|
mp2b |
⊢ ( ( 𝑥 ∈ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) |
15 |
9 14
|
mpan2 |
⊢ ( 𝑥 ∈ ( rank ‘ 𝐴 ) → 𝑥 ∈ dom 𝑅1 ) |
16 |
15
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ dom 𝑅1 ) |
17 |
|
rankr1ag |
⊢ ( ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ dom 𝑅1 ) → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) |
18 |
8 16 17
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) |
19 |
18
|
ralbidva |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) |
20 |
19
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
21 |
20
|
an32s |
⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
22 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
23 |
21 22
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
24 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
25 |
15
|
adantl |
⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → 𝑥 ∈ dom 𝑅1 ) |
26 |
|
rankr1bg |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
27 |
24 25 26
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
28 |
23 27
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ∧ 𝑥 ∈ ( rank ‘ 𝐴 ) ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) |
29 |
28
|
ex |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) → ( 𝑥 ∈ ( rank ‘ 𝐴 ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
30 |
29
|
adantrl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) → ( 𝑥 ∈ ( rank ‘ 𝐴 ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
31 |
5 30
|
sylbird |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) → ( ¬ ( rank ‘ 𝐴 ) ⊆ 𝑥 → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
32 |
31
|
pm2.18d |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) |
33 |
32
|
ex |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
34 |
33
|
alrimiv |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∀ 𝑥 ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
35 |
|
ssintab |
⊢ ( ( rank ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) → ( rank ‘ 𝐴 ) ⊆ 𝑥 ) ) |
36 |
34 35
|
sylibr |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) } ) |
37 |
|
df-rab |
⊢ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) } |
38 |
37
|
inteqi |
⊢ ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } = ∩ { 𝑥 ∣ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ) } |
39 |
36 38
|
sseqtrrdi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
40 |
|
rankelb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑦 ∈ 𝐴 → ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) ) ) |
41 |
40
|
ralrimiv |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) ) |
42 |
|
eleq2 |
⊢ ( 𝑥 = ( rank ‘ 𝐴 ) → ( ( rank ‘ 𝑦 ) ∈ 𝑥 ↔ ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) ) ) |
43 |
42
|
ralbidv |
⊢ ( 𝑥 = ( rank ‘ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) ) ) |
44 |
43
|
onintss |
⊢ ( ( rank ‘ 𝐴 ) ∈ On → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } ⊆ ( rank ‘ 𝐴 ) ) ) |
45 |
1 41 44
|
mpsyl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } ⊆ ( rank ‘ 𝐴 ) ) |
46 |
39 45
|
eqssd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |