Step |
Hyp |
Ref |
Expression |
1 |
|
rankr1b.1 |
⊢ 𝐴 ∈ V |
2 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑅1 |
4 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |
5 |
3 4
|
nffv |
⊢ Ⅎ 𝑥 ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
6 |
2 5
|
dfss2f |
⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
7 |
|
vex |
⊢ 𝑥 ∈ V |
8 |
7
|
rankid |
⊢ 𝑥 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) |
9 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → suc ( rank ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
10 |
|
rankon |
⊢ ( rank ‘ 𝑥 ) ∈ On |
11 |
10
|
onsuci |
⊢ suc ( rank ‘ 𝑥 ) ∈ On |
12 |
11
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On |
13 |
|
iunon |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ) → ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ) |
14 |
1 12 13
|
mp2an |
⊢ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On |
15 |
|
r1ord3 |
⊢ ( ( suc ( rank ‘ 𝑥 ) ∈ On ∧ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ) → ( suc ( rank ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
16 |
11 14 15
|
mp2an |
⊢ ( suc ( rank ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) |
17 |
9 16
|
syl |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) |
18 |
17
|
sseld |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) → 𝑥 ∈ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
19 |
8 18
|
mpi |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) |
20 |
6 19
|
mpgbir |
⊢ 𝐴 ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
21 |
|
fvex |
⊢ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ∈ V |
22 |
21
|
rankss |
⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
23 |
20 22
|
ax-mp |
⊢ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) |
24 |
|
r1ord3 |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ∧ 𝑦 ∈ On ) → ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 → ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) ) ) |
25 |
14 24
|
mpan |
⊢ ( 𝑦 ∈ On → ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 → ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) ) ) |
26 |
25
|
ss2rabi |
⊢ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ⊆ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } |
27 |
|
intss |
⊢ ( { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ⊆ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } → ∩ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } ⊆ ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ) |
28 |
26 27
|
ax-mp |
⊢ ∩ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } ⊆ ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } |
29 |
|
rankval2 |
⊢ ( ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ∈ V → ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) = ∩ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } ) |
30 |
21 29
|
ax-mp |
⊢ ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) = ∩ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } |
31 |
|
intmin |
⊢ ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On → ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
32 |
14 31
|
ax-mp |
⊢ ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |
33 |
32
|
eqcomi |
⊢ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) = ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } |
34 |
28 30 33
|
3sstr4i |
⊢ ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |
35 |
23 34
|
sstri |
⊢ ( rank ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |
36 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ) |
37 |
1
|
rankel |
⊢ ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) |
38 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
39 |
10 38
|
onsucssi |
⊢ ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ) |
40 |
37 39
|
sylib |
⊢ ( 𝑥 ∈ 𝐴 → suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ) |
41 |
36 40
|
mprgbir |
⊢ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) |
42 |
35 41
|
eqssi |
⊢ ( rank ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |