| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rank |
⊢ rank = ( 𝑦 ∈ V ↦ ∩ { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| 2 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) |
| 3 |
2
|
rabbidv |
⊢ ( 𝑦 = 𝐴 → { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } = { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| 4 |
3
|
inteqd |
⊢ ( 𝑦 = 𝐴 → ∩ { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| 5 |
|
elex |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ V ) |
| 6 |
|
rankwflemb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 7 |
|
intexrab |
⊢ ( ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ∈ V ) |
| 8 |
6 7
|
sylbb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ∈ V ) |
| 9 |
1 4 5 8
|
fvmptd3 |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |