| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑦  =  𝐴  →  ( rank ‘ 𝑦 )  =  ( rank ‘ 𝐴 ) ) | 
						
							| 2 |  | eleq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  ∈  ( 𝑅1 ‘ suc  𝑥 )  ↔  𝐴  ∈  ( 𝑅1 ‘ suc  𝑥 ) ) ) | 
						
							| 3 | 2 | rabbidv | ⊢ ( 𝑦  =  𝐴  →  { 𝑥  ∈  On  ∣  𝑦  ∈  ( 𝑅1 ‘ suc  𝑥 ) }  =  { 𝑥  ∈  On  ∣  𝐴  ∈  ( 𝑅1 ‘ suc  𝑥 ) } ) | 
						
							| 4 | 3 | inteqd | ⊢ ( 𝑦  =  𝐴  →  ∩  { 𝑥  ∈  On  ∣  𝑦  ∈  ( 𝑅1 ‘ suc  𝑥 ) }  =  ∩  { 𝑥  ∈  On  ∣  𝐴  ∈  ( 𝑅1 ‘ suc  𝑥 ) } ) | 
						
							| 5 | 1 4 | eqeq12d | ⊢ ( 𝑦  =  𝐴  →  ( ( rank ‘ 𝑦 )  =  ∩  { 𝑥  ∈  On  ∣  𝑦  ∈  ( 𝑅1 ‘ suc  𝑥 ) }  ↔  ( rank ‘ 𝐴 )  =  ∩  { 𝑥  ∈  On  ∣  𝐴  ∈  ( 𝑅1 ‘ suc  𝑥 ) } ) ) | 
						
							| 6 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 7 | 6 | rankval | ⊢ ( rank ‘ 𝑦 )  =  ∩  { 𝑥  ∈  On  ∣  𝑦  ∈  ( 𝑅1 ‘ suc  𝑥 ) } | 
						
							| 8 | 5 7 | vtoclg | ⊢ ( 𝐴  ∈  𝑉  →  ( rank ‘ 𝐴 )  =  ∩  { 𝑥  ∈  On  ∣  𝐴  ∈  ( 𝑅1 ‘ suc  𝑥 ) } ) |