Step |
Hyp |
Ref |
Expression |
1 |
|
eluni |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑦 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝑅1 “ On ) ) ) |
2 |
|
eleq2 |
⊢ ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ 𝐴 ∈ 𝑦 ) ) |
3 |
2
|
biimprcd |
⊢ ( 𝐴 ∈ 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
4 |
|
r1tr |
⊢ Tr ( 𝑅1 ‘ 𝑥 ) |
5 |
|
trss |
⊢ ( Tr ( 𝑅1 ‘ 𝑥 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
7 |
|
elpwg |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) |
8 |
6 7
|
mpbird |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
9 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝑥 ∈ dom 𝑅1 ) |
10 |
|
r1sucg |
⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
12 |
8 11
|
eleqtrrd |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
13 |
12
|
a1i |
⊢ ( 𝑥 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) |
14 |
3 13
|
syl9 |
⊢ ( 𝐴 ∈ 𝑦 → ( 𝑥 ∈ On → ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) ) |
15 |
14
|
reximdvai |
⊢ ( 𝐴 ∈ 𝑦 → ( ∃ 𝑥 ∈ On ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) |
16 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
17 |
16
|
simpli |
⊢ Fun 𝑅1 |
18 |
|
fvelima |
⊢ ( ( Fun 𝑅1 ∧ 𝑦 ∈ ( 𝑅1 “ On ) ) → ∃ 𝑥 ∈ On ( 𝑅1 ‘ 𝑥 ) = 𝑦 ) |
19 |
17 18
|
mpan |
⊢ ( 𝑦 ∈ ( 𝑅1 “ On ) → ∃ 𝑥 ∈ On ( 𝑅1 ‘ 𝑥 ) = 𝑦 ) |
20 |
15 19
|
impel |
⊢ ( ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝑅1 “ On ) ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
21 |
20
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝑅1 “ On ) ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
22 |
1 21
|
sylbi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
23 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → suc 𝑥 ∈ dom 𝑅1 ) |
24 |
|
fvelrn |
⊢ ( ( Fun 𝑅1 ∧ suc 𝑥 ∈ dom 𝑅1 ) → ( 𝑅1 ‘ suc 𝑥 ) ∈ ran 𝑅1 ) |
25 |
17 23 24
|
sylancr |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → ( 𝑅1 ‘ suc 𝑥 ) ∈ ran 𝑅1 ) |
26 |
|
df-ima |
⊢ ( 𝑅1 “ On ) = ran ( 𝑅1 ↾ On ) |
27 |
|
funrel |
⊢ ( Fun 𝑅1 → Rel 𝑅1 ) |
28 |
17 27
|
ax-mp |
⊢ Rel 𝑅1 |
29 |
16
|
simpri |
⊢ Lim dom 𝑅1 |
30 |
|
limord |
⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) |
31 |
|
ordsson |
⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) |
32 |
29 30 31
|
mp2b |
⊢ dom 𝑅1 ⊆ On |
33 |
|
relssres |
⊢ ( ( Rel 𝑅1 ∧ dom 𝑅1 ⊆ On ) → ( 𝑅1 ↾ On ) = 𝑅1 ) |
34 |
28 32 33
|
mp2an |
⊢ ( 𝑅1 ↾ On ) = 𝑅1 |
35 |
34
|
rneqi |
⊢ ran ( 𝑅1 ↾ On ) = ran 𝑅1 |
36 |
26 35
|
eqtri |
⊢ ( 𝑅1 “ On ) = ran 𝑅1 |
37 |
25 36
|
eleqtrrdi |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → ( 𝑅1 ‘ suc 𝑥 ) ∈ ( 𝑅1 “ On ) ) |
38 |
|
elunii |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ∧ ( 𝑅1 ‘ suc 𝑥 ) ∈ ( 𝑅1 “ On ) ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
39 |
37 38
|
mpdan |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
40 |
39
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
41 |
22 40
|
impbii |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |