Step |
Hyp |
Ref |
Expression |
1 |
|
rankxpl.1 |
⊢ 𝐴 ∈ V |
2 |
|
rankxpl.2 |
⊢ 𝐵 ∈ V |
3 |
|
unixp |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ∪ ∪ ( 𝐴 × 𝐵 ) = ( 𝐴 ∪ 𝐵 ) ) |
4 |
3
|
fveq2d |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
5 |
1 2
|
xpex |
⊢ ( 𝐴 × 𝐵 ) ∈ V |
6 |
5
|
uniex |
⊢ ∪ ( 𝐴 × 𝐵 ) ∈ V |
7 |
6
|
rankuniss |
⊢ ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) ⊆ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) |
8 |
5
|
rankuniss |
⊢ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) |
9 |
7 8
|
sstri |
⊢ ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) |
10 |
4 9
|
eqsstrrdi |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |