| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rankxpl.1 | 
							⊢ 𝐴  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							rankxpl.2 | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 3 | 
							
								
							 | 
							xpsspw | 
							⊢ ( 𝐴  ×  𝐵 )  ⊆  𝒫  𝒫  ( 𝐴  ∪  𝐵 )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							unex | 
							⊢ ( 𝐴  ∪  𝐵 )  ∈  V  | 
						
						
							| 5 | 
							
								4
							 | 
							pwex | 
							⊢ 𝒫  ( 𝐴  ∪  𝐵 )  ∈  V  | 
						
						
							| 6 | 
							
								5
							 | 
							pwex | 
							⊢ 𝒫  𝒫  ( 𝐴  ∪  𝐵 )  ∈  V  | 
						
						
							| 7 | 
							
								6
							 | 
							rankss | 
							⊢ ( ( 𝐴  ×  𝐵 )  ⊆  𝒫  𝒫  ( 𝐴  ∪  𝐵 )  →  ( rank ‘ ( 𝐴  ×  𝐵 ) )  ⊆  ( rank ‘ 𝒫  𝒫  ( 𝐴  ∪  𝐵 ) ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							ax-mp | 
							⊢ ( rank ‘ ( 𝐴  ×  𝐵 ) )  ⊆  ( rank ‘ 𝒫  𝒫  ( 𝐴  ∪  𝐵 ) )  | 
						
						
							| 9 | 
							
								5
							 | 
							rankpw | 
							⊢ ( rank ‘ 𝒫  𝒫  ( 𝐴  ∪  𝐵 ) )  =  suc  ( rank ‘ 𝒫  ( 𝐴  ∪  𝐵 ) )  | 
						
						
							| 10 | 
							
								4
							 | 
							rankpw | 
							⊢ ( rank ‘ 𝒫  ( 𝐴  ∪  𝐵 ) )  =  suc  ( rank ‘ ( 𝐴  ∪  𝐵 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							suceq | 
							⊢ ( ( rank ‘ 𝒫  ( 𝐴  ∪  𝐵 ) )  =  suc  ( rank ‘ ( 𝐴  ∪  𝐵 ) )  →  suc  ( rank ‘ 𝒫  ( 𝐴  ∪  𝐵 ) )  =  suc  suc  ( rank ‘ ( 𝐴  ∪  𝐵 ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							ax-mp | 
							⊢ suc  ( rank ‘ 𝒫  ( 𝐴  ∪  𝐵 ) )  =  suc  suc  ( rank ‘ ( 𝐴  ∪  𝐵 ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							eqtri | 
							⊢ ( rank ‘ 𝒫  𝒫  ( 𝐴  ∪  𝐵 ) )  =  suc  suc  ( rank ‘ ( 𝐴  ∪  𝐵 ) )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							sseqtri | 
							⊢ ( rank ‘ ( 𝐴  ×  𝐵 ) )  ⊆  suc  suc  ( rank ‘ ( 𝐴  ∪  𝐵 ) )  |