Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015) (Proof shortened by Wolf Lammen, 19-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | baib.1 | ⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) | |
Assertion | rbaib | ⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | ⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) | |
2 | 1 | rbaibr | ⊢ ( 𝜒 → ( 𝜓 ↔ 𝜑 ) ) |
3 | 2 | bicomd | ⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) |