Metamath Proof Explorer


Theorem rbaib

Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015) (Proof shortened by Wolf Lammen, 19-Jan-2020)

Ref Expression
Hypothesis baib.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
Assertion rbaib ( 𝜒 → ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 baib.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 1 rbaibr ( 𝜒 → ( 𝜓𝜑 ) )
3 2 bicomd ( 𝜒 → ( 𝜑𝜓 ) )