Metamath Proof Explorer


Theorem rbaibd

Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis baibd.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
Assertion rbaibd ( ( 𝜑𝜃 ) → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 baibd.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
2 1 biancomd ( 𝜑 → ( 𝜓 ↔ ( 𝜃𝜒 ) ) )
3 2 baibd ( ( 𝜑𝜃 ) → ( 𝜓𝜒 ) )