Metamath Proof Explorer


Theorem rbaibr

Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015) (Proof shortened by Wolf Lammen, 19-Jan-2020)

Ref Expression
Hypothesis baib.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
Assertion rbaibr ( 𝜒 → ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 baib.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 1 biancomi ( 𝜑 ↔ ( 𝜒𝜓 ) )
3 2 baibr ( 𝜒 → ( 𝜓𝜑 ) )