Metamath Proof Explorer


Theorem rcompleq

Description: Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq . (Contributed by RP, 10-Jun-2021)

Ref Expression
Assertion rcompleq ( ( 𝐴𝐶𝐵𝐶 ) → ( 𝐴 = 𝐵 ↔ ( 𝐶𝐴 ) = ( 𝐶𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ancom ( ( 𝐴𝐵𝐵𝐴 ) ↔ ( 𝐵𝐴𝐴𝐵 ) )
2 sscon34b ( ( 𝐵𝐶𝐴𝐶 ) → ( 𝐵𝐴 ↔ ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) ) )
3 2 ancoms ( ( 𝐴𝐶𝐵𝐶 ) → ( 𝐵𝐴 ↔ ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) ) )
4 sscon34b ( ( 𝐴𝐶𝐵𝐶 ) → ( 𝐴𝐵 ↔ ( 𝐶𝐵 ) ⊆ ( 𝐶𝐴 ) ) )
5 3 4 anbi12d ( ( 𝐴𝐶𝐵𝐶 ) → ( ( 𝐵𝐴𝐴𝐵 ) ↔ ( ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) ∧ ( 𝐶𝐵 ) ⊆ ( 𝐶𝐴 ) ) ) )
6 1 5 syl5bb ( ( 𝐴𝐶𝐵𝐶 ) → ( ( 𝐴𝐵𝐵𝐴 ) ↔ ( ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) ∧ ( 𝐶𝐵 ) ⊆ ( 𝐶𝐴 ) ) ) )
7 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
8 eqss ( ( 𝐶𝐴 ) = ( 𝐶𝐵 ) ↔ ( ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) ∧ ( 𝐶𝐵 ) ⊆ ( 𝐶𝐴 ) ) )
9 6 7 8 3bitr4g ( ( 𝐴𝐶𝐵𝐶 ) → ( 𝐴 = 𝐵 ↔ ( 𝐶𝐴 ) = ( 𝐶𝐵 ) ) )