Step |
Hyp |
Ref |
Expression |
1 |
|
ancom |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ) |
2 |
|
sscon34b |
⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶 ) → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐶 ∖ 𝐴 ) ⊆ ( 𝐶 ∖ 𝐵 ) ) ) |
3 |
2
|
ancoms |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐶 ∖ 𝐴 ) ⊆ ( 𝐶 ∖ 𝐵 ) ) ) |
4 |
|
sscon34b |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) ) |
5 |
3 4
|
anbi12d |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ↔ ( ( 𝐶 ∖ 𝐴 ) ⊆ ( 𝐶 ∖ 𝐵 ) ∧ ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) ) ) |
6 |
1 5
|
syl5bb |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ↔ ( ( 𝐶 ∖ 𝐴 ) ⊆ ( 𝐶 ∖ 𝐵 ) ∧ ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) ) ) |
7 |
|
eqss |
⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) |
8 |
|
eqss |
⊢ ( ( 𝐶 ∖ 𝐴 ) = ( 𝐶 ∖ 𝐵 ) ↔ ( ( 𝐶 ∖ 𝐴 ) ⊆ ( 𝐶 ∖ 𝐵 ) ∧ ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) ) |
9 |
6 7 8
|
3bitr4g |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 = 𝐵 ↔ ( 𝐶 ∖ 𝐴 ) = ( 𝐶 ∖ 𝐵 ) ) ) |