Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | rdg0g | ⊢ ( 𝐴 ∈ 𝐶 → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgeq2 | ⊢ ( 𝑥 = 𝐴 → rec ( 𝐹 , 𝑥 ) = rec ( 𝐹 , 𝐴 ) ) | |
2 | 1 | fveq1d | ⊢ ( 𝑥 = 𝐴 → ( rec ( 𝐹 , 𝑥 ) ‘ ∅ ) = ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) ) |
3 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
4 | 2 3 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( rec ( 𝐹 , 𝑥 ) ‘ ∅ ) = 𝑥 ↔ ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 ) ) |
5 | vex | ⊢ 𝑥 ∈ V | |
6 | 5 | rdg0 | ⊢ ( rec ( 𝐹 , 𝑥 ) ‘ ∅ ) = 𝑥 |
7 | 4 6 | vtoclg | ⊢ ( 𝐴 ∈ 𝐶 → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 ) |