Metamath Proof Explorer


Theorem rdg0g

Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995)

Ref Expression
Assertion rdg0g ( 𝐴𝐶 → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 rdgeq2 ( 𝑥 = 𝐴 → rec ( 𝐹 , 𝑥 ) = rec ( 𝐹 , 𝐴 ) )
2 1 fveq1d ( 𝑥 = 𝐴 → ( rec ( 𝐹 , 𝑥 ) ‘ ∅ ) = ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) )
3 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
4 2 3 eqeq12d ( 𝑥 = 𝐴 → ( ( rec ( 𝐹 , 𝑥 ) ‘ ∅ ) = 𝑥 ↔ ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 ) )
5 vex 𝑥 ∈ V
6 5 rdg0 ( rec ( 𝐹 , 𝑥 ) ‘ ∅ ) = 𝑥
7 4 6 vtoclg ( 𝐴𝐶 → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 )