Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) = ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) |
2 |
1
|
ifeq2d |
⊢ ( 𝐹 = 𝐺 → if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) = if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) |
3 |
2
|
ifeq2d |
⊢ ( 𝐹 = 𝐺 → if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) = if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) |
4 |
3
|
mpteq2dv |
⊢ ( 𝐹 = 𝐺 → ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
5 |
|
recseq |
⊢ ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) → recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) ) |
6 |
4 5
|
syl |
⊢ ( 𝐹 = 𝐺 → recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) ) |
7 |
|
df-rdg |
⊢ rec ( 𝐹 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
8 |
|
df-rdg |
⊢ rec ( 𝐺 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐺 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
9 |
6 7 8
|
3eqtr4g |
⊢ ( 𝐹 = 𝐺 → rec ( 𝐹 , 𝐴 ) = rec ( 𝐺 , 𝐴 ) ) |