Description: Equality theorem for the recursive definition generator. (Contributed by Scott Fenton, 28-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | rdgeq12 | ⊢ ( ( 𝐹 = 𝐺 ∧ 𝐴 = 𝐵 ) → rec ( 𝐹 , 𝐴 ) = rec ( 𝐺 , 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgeq2 | ⊢ ( 𝐴 = 𝐵 → rec ( 𝐹 , 𝐴 ) = rec ( 𝐹 , 𝐵 ) ) | |
2 | rdgeq1 | ⊢ ( 𝐹 = 𝐺 → rec ( 𝐹 , 𝐵 ) = rec ( 𝐺 , 𝐵 ) ) | |
3 | 1 2 | sylan9eqr | ⊢ ( ( 𝐹 = 𝐺 ∧ 𝐴 = 𝐵 ) → rec ( 𝐹 , 𝐴 ) = rec ( 𝐺 , 𝐵 ) ) |