Step |
Hyp |
Ref |
Expression |
1 |
|
ifeq1 |
⊢ ( 𝐴 = 𝐵 → if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) = if ( 𝑔 = ∅ , 𝐵 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) |
2 |
1
|
mpteq2dv |
⊢ ( 𝐴 = 𝐵 → ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐵 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
3 |
|
recseq |
⊢ ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐵 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) → recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐵 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 = 𝐵 → recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐵 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) ) |
5 |
|
df-rdg |
⊢ rec ( 𝐹 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
6 |
|
df-rdg |
⊢ rec ( 𝐹 , 𝐵 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐵 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
7 |
4 5 6
|
3eqtr4g |
⊢ ( 𝐴 = 𝐵 → rec ( 𝐹 , 𝐴 ) = rec ( 𝐹 , 𝐵 ) ) |