Metamath Proof Explorer


Theorem rdgeq2

Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Assertion rdgeq2 ( 𝐴 = 𝐵 → rec ( 𝐹 , 𝐴 ) = rec ( 𝐹 , 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ifeq1 ( 𝐴 = 𝐵 → if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) = if ( 𝑔 = ∅ , 𝐵 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) )
2 1 mpteq2dv ( 𝐴 = 𝐵 → ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐵 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) )
3 recseq ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐵 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) → recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐵 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) ) )
4 2 3 syl ( 𝐴 = 𝐵 → recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐵 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) ) )
5 df-rdg rec ( 𝐹 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) )
6 df-rdg rec ( 𝐹 , 𝐵 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐵 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) )
7 4 5 6 3eqtr4g ( 𝐴 = 𝐵 → rec ( 𝐹 , 𝐴 ) = rec ( 𝐹 , 𝐵 ) )