Step |
Hyp |
Ref |
Expression |
1 |
|
rdglim |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) = ∪ ( rec ( 𝐹 , 𝐴 ) “ 𝐵 ) ) |
2 |
|
dfima3 |
⊢ ( rec ( 𝐹 , 𝐴 ) “ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) } |
3 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) |
4 |
|
limord |
⊢ ( Lim 𝐵 → Ord 𝐵 ) |
5 |
|
ordelord |
⊢ ( ( Ord 𝐵 ∧ 𝑥 ∈ 𝐵 ) → Ord 𝑥 ) |
6 |
5
|
ex |
⊢ ( Ord 𝐵 → ( 𝑥 ∈ 𝐵 → Ord 𝑥 ) ) |
7 |
|
vex |
⊢ 𝑥 ∈ V |
8 |
7
|
elon |
⊢ ( 𝑥 ∈ On ↔ Ord 𝑥 ) |
9 |
6 8
|
syl6ibr |
⊢ ( Ord 𝐵 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ On ) ) |
10 |
4 9
|
syl |
⊢ ( Lim 𝐵 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ On ) ) |
11 |
|
eqcom |
⊢ ( 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) = 𝑦 ) |
12 |
|
rdgfnon |
⊢ rec ( 𝐹 , 𝐴 ) Fn On |
13 |
|
fnopfvb |
⊢ ( ( rec ( 𝐹 , 𝐴 ) Fn On ∧ 𝑥 ∈ On ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ) |
14 |
12 13
|
mpan |
⊢ ( 𝑥 ∈ On → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ) |
15 |
11 14
|
bitrid |
⊢ ( 𝑥 ∈ On → ( 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ) |
16 |
10 15
|
syl6 |
⊢ ( Lim 𝐵 → ( 𝑥 ∈ 𝐵 → ( 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ) ) |
17 |
16
|
pm5.32d |
⊢ ( Lim 𝐵 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ) ) |
18 |
17
|
exbidv |
⊢ ( Lim 𝐵 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ) ) |
19 |
3 18
|
bitr2id |
⊢ ( Lim 𝐵 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ↔ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) |
20 |
19
|
abbidv |
⊢ ( Lim 𝐵 → { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |
21 |
2 20
|
eqtrid |
⊢ ( Lim 𝐵 → ( rec ( 𝐹 , 𝐴 ) “ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |
22 |
21
|
unieqd |
⊢ ( Lim 𝐵 → ∪ ( rec ( 𝐹 , 𝐴 ) “ 𝐵 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |
23 |
22
|
adantl |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ∪ ( rec ( 𝐹 , 𝐴 ) “ 𝐵 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |
24 |
1 23
|
eqtrd |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |