| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rdglim | ⊢ ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝐵 )  =  ∪  ( rec ( 𝐹 ,  𝐴 )  “  𝐵 ) ) | 
						
							| 2 |  | dfima3 | ⊢ ( rec ( 𝐹 ,  𝐴 )  “  𝐵 )  =  { 𝑦  ∣  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  〈 𝑥 ,  𝑦 〉  ∈  rec ( 𝐹 ,  𝐴 ) ) } | 
						
							| 3 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐵 𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 ) ) ) | 
						
							| 4 |  | limord | ⊢ ( Lim  𝐵  →  Ord  𝐵 ) | 
						
							| 5 |  | ordelord | ⊢ ( ( Ord  𝐵  ∧  𝑥  ∈  𝐵 )  →  Ord  𝑥 ) | 
						
							| 6 | 5 | ex | ⊢ ( Ord  𝐵  →  ( 𝑥  ∈  𝐵  →  Ord  𝑥 ) ) | 
						
							| 7 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 8 | 7 | elon | ⊢ ( 𝑥  ∈  On  ↔  Ord  𝑥 ) | 
						
							| 9 | 6 8 | imbitrrdi | ⊢ ( Ord  𝐵  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  On ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( Lim  𝐵  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  On ) ) | 
						
							| 11 |  | eqcom | ⊢ ( 𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 )  ↔  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 )  =  𝑦 ) | 
						
							| 12 |  | rdgfnon | ⊢ rec ( 𝐹 ,  𝐴 )  Fn  On | 
						
							| 13 |  | fnopfvb | ⊢ ( ( rec ( 𝐹 ,  𝐴 )  Fn  On  ∧  𝑥  ∈  On )  →  ( ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 )  =  𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  rec ( 𝐹 ,  𝐴 ) ) ) | 
						
							| 14 | 12 13 | mpan | ⊢ ( 𝑥  ∈  On  →  ( ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 )  =  𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  rec ( 𝐹 ,  𝐴 ) ) ) | 
						
							| 15 | 11 14 | bitrid | ⊢ ( 𝑥  ∈  On  →  ( 𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 )  ↔  〈 𝑥 ,  𝑦 〉  ∈  rec ( 𝐹 ,  𝐴 ) ) ) | 
						
							| 16 | 10 15 | syl6 | ⊢ ( Lim  𝐵  →  ( 𝑥  ∈  𝐵  →  ( 𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 )  ↔  〈 𝑥 ,  𝑦 〉  ∈  rec ( 𝐹 ,  𝐴 ) ) ) ) | 
						
							| 17 | 16 | pm5.32d | ⊢ ( Lim  𝐵  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 ) )  ↔  ( 𝑥  ∈  𝐵  ∧  〈 𝑥 ,  𝑦 〉  ∈  rec ( 𝐹 ,  𝐴 ) ) ) ) | 
						
							| 18 | 17 | exbidv | ⊢ ( Lim  𝐵  →  ( ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  〈 𝑥 ,  𝑦 〉  ∈  rec ( 𝐹 ,  𝐴 ) ) ) ) | 
						
							| 19 | 3 18 | bitr2id | ⊢ ( Lim  𝐵  →  ( ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  〈 𝑥 ,  𝑦 〉  ∈  rec ( 𝐹 ,  𝐴 ) )  ↔  ∃ 𝑥  ∈  𝐵 𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 ) ) ) | 
						
							| 20 | 19 | abbidv | ⊢ ( Lim  𝐵  →  { 𝑦  ∣  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  〈 𝑥 ,  𝑦 〉  ∈  rec ( 𝐹 ,  𝐴 ) ) }  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐵 𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 ) } ) | 
						
							| 21 | 2 20 | eqtrid | ⊢ ( Lim  𝐵  →  ( rec ( 𝐹 ,  𝐴 )  “  𝐵 )  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐵 𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 ) } ) | 
						
							| 22 | 21 | unieqd | ⊢ ( Lim  𝐵  →  ∪  ( rec ( 𝐹 ,  𝐴 )  “  𝐵 )  =  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  𝐵 𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 ) } ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  ∪  ( rec ( 𝐹 ,  𝐴 )  “  𝐵 )  =  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  𝐵 𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 ) } ) | 
						
							| 24 | 1 23 | eqtrd | ⊢ ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝐵 )  =  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  𝐵 𝑦  =  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑥 ) } ) |