| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rdgssun.1 |
⊢ 𝐹 = ( 𝑤 ∈ V ↦ ( 𝑤 ∪ 𝐵 ) ) |
| 2 |
|
rdgssun.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ ∅ / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) |
| 4 |
|
0ex |
⊢ ∅ ∈ V |
| 5 |
|
rzal |
⊢ ( 𝑥 = ∅ → ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) |
| 6 |
|
sbceq1a |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ [ ∅ / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) |
| 7 |
5 6
|
mpbid |
⊢ ( 𝑥 = ∅ → [ ∅ / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) |
| 8 |
3 4 7
|
vtoclef |
⊢ [ ∅ / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) |
| 9 |
|
vex |
⊢ 𝑦 ∈ V |
| 10 |
9
|
elsuc |
⊢ ( 𝑦 ∈ suc 𝑥 ↔ ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ) ) |
| 11 |
|
ssun1 |
⊢ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ⊆ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ∪ ⦋ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) / 𝑤 ⦌ 𝐵 ) |
| 12 |
|
fvex |
⊢ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ∈ V |
| 13 |
2
|
csbex |
⊢ ⦋ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) / 𝑤 ⦌ 𝐵 ∈ V |
| 14 |
12 13
|
unex |
⊢ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ∪ ⦋ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) / 𝑤 ⦌ 𝐵 ) ∈ V |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐴 |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑥 |
| 17 |
|
nfmpt1 |
⊢ Ⅎ 𝑤 ( 𝑤 ∈ V ↦ ( 𝑤 ∪ 𝐵 ) ) |
| 18 |
1 17
|
nfcxfr |
⊢ Ⅎ 𝑤 𝐹 |
| 19 |
18 15
|
nfrdg |
⊢ Ⅎ 𝑤 rec ( 𝐹 , 𝐴 ) |
| 20 |
19 16
|
nffv |
⊢ Ⅎ 𝑤 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) |
| 21 |
20
|
nfcsb1 |
⊢ Ⅎ 𝑤 ⦋ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) / 𝑤 ⦌ 𝐵 |
| 22 |
20 21
|
nfun |
⊢ Ⅎ 𝑤 ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ∪ ⦋ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) / 𝑤 ⦌ 𝐵 ) |
| 23 |
|
rdgeq1 |
⊢ ( 𝐹 = ( 𝑤 ∈ V ↦ ( 𝑤 ∪ 𝐵 ) ) → rec ( 𝐹 , 𝐴 ) = rec ( ( 𝑤 ∈ V ↦ ( 𝑤 ∪ 𝐵 ) ) , 𝐴 ) ) |
| 24 |
1 23
|
ax-mp |
⊢ rec ( 𝐹 , 𝐴 ) = rec ( ( 𝑤 ∈ V ↦ ( 𝑤 ∪ 𝐵 ) ) , 𝐴 ) |
| 25 |
|
id |
⊢ ( 𝑤 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) → 𝑤 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) |
| 26 |
|
csbeq1a |
⊢ ( 𝑤 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) → 𝐵 = ⦋ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) / 𝑤 ⦌ 𝐵 ) |
| 27 |
25 26
|
uneq12d |
⊢ ( 𝑤 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) → ( 𝑤 ∪ 𝐵 ) = ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ∪ ⦋ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) / 𝑤 ⦌ 𝐵 ) ) |
| 28 |
15 16 22 24 27
|
rdgsucmptf |
⊢ ( ( 𝑥 ∈ On ∧ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ∪ ⦋ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) / 𝑤 ⦌ 𝐵 ) ∈ V ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) = ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ∪ ⦋ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) / 𝑤 ⦌ 𝐵 ) ) |
| 29 |
14 28
|
mpan2 |
⊢ ( 𝑥 ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) = ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ∪ ⦋ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) / 𝑤 ⦌ 𝐵 ) ) |
| 30 |
11 29
|
sseqtrrid |
⊢ ( 𝑥 ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) |
| 31 |
|
sstr2 |
⊢ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) |
| 32 |
30 31
|
syl5com |
⊢ ( 𝑥 ∈ On → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) |
| 33 |
32
|
imim2d |
⊢ ( 𝑥 ∈ On → ( ( 𝑦 ∈ 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) ) |
| 34 |
33
|
imp |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑦 ∈ 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) → ( 𝑦 ∈ 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) |
| 36 |
35
|
sseq1d |
⊢ ( 𝑦 = 𝑥 → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) |
| 37 |
30 36
|
syl5ibrcom |
⊢ ( 𝑥 ∈ On → ( 𝑦 = 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑦 ∈ 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) → ( 𝑦 = 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) |
| 39 |
34 38
|
jaod |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑦 ∈ 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) → ( ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) |
| 40 |
10 39
|
biimtrid |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑦 ∈ 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) → ( 𝑦 ∈ suc 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) |
| 41 |
40
|
ex |
⊢ ( 𝑥 ∈ On → ( ( 𝑦 ∈ 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ suc 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) ) |
| 42 |
41
|
ralimdv2 |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) → ∀ 𝑦 ∈ suc 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) |
| 43 |
|
df-sbc |
⊢ ( [ suc 𝑥 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ suc 𝑥 ∈ { 𝑥 ∣ ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |
| 44 |
|
vex |
⊢ 𝑥 ∈ V |
| 45 |
44
|
sucex |
⊢ suc 𝑥 ∈ V |
| 46 |
|
fveq2 |
⊢ ( 𝑧 = suc 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) = ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) |
| 47 |
46
|
sseq2d |
⊢ ( 𝑧 = suc 𝑥 → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) |
| 48 |
47
|
raleqbi1dv |
⊢ ( 𝑧 = suc 𝑥 → ( ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) ↔ ∀ 𝑦 ∈ suc 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) ) |
| 49 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) ) |
| 50 |
49
|
sseq2d |
⊢ ( 𝑥 = 𝑧 → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) ) ) |
| 51 |
50
|
raleqbi1dv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) ) ) |
| 52 |
51
|
cbvabv |
⊢ { 𝑥 ∣ ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } = { 𝑧 ∣ ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) } |
| 53 |
45 48 52
|
elab2 |
⊢ ( suc 𝑥 ∈ { 𝑥 ∣ ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ↔ ∀ 𝑦 ∈ suc 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) |
| 54 |
43 53
|
bitri |
⊢ ( [ suc 𝑥 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ suc 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑥 ) ) |
| 55 |
42 54
|
imbitrrdi |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) → [ suc 𝑥 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) |
| 56 |
|
ssiun2 |
⊢ ( 𝑦 ∈ 𝑧 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) |
| 57 |
56
|
adantl |
⊢ ( ( Lim 𝑧 ∧ 𝑦 ∈ 𝑧 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) |
| 58 |
|
vex |
⊢ 𝑧 ∈ V |
| 59 |
|
rdglim2a |
⊢ ( ( 𝑧 ∈ V ∧ Lim 𝑧 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) = ∪ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) |
| 60 |
58 59
|
mpan |
⊢ ( Lim 𝑧 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) = ∪ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) |
| 61 |
60
|
adantr |
⊢ ( ( Lim 𝑧 ∧ 𝑦 ∈ 𝑧 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) = ∪ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ) |
| 62 |
57 61
|
sseqtrrd |
⊢ ( ( Lim 𝑧 ∧ 𝑦 ∈ 𝑧 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) ) |
| 63 |
62
|
ralrimiva |
⊢ ( Lim 𝑧 → ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) ) |
| 64 |
|
df-sbc |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ 𝑧 ∈ { 𝑥 ∣ ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |
| 65 |
52
|
eleq2i |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ↔ 𝑧 ∈ { 𝑧 ∣ ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) } ) |
| 66 |
64 65
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ 𝑧 ∈ { 𝑧 ∣ ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) } ) |
| 67 |
|
abid |
⊢ ( 𝑧 ∈ { 𝑧 ∣ ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) } ↔ ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) ) |
| 68 |
66 67
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑧 ) ) |
| 69 |
63 68
|
sylibr |
⊢ ( Lim 𝑧 → [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) |
| 70 |
69
|
a1d |
⊢ ( Lim 𝑧 → ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) → [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) |
| 71 |
8 55 70
|
tfindes |
⊢ ( 𝑥 ∈ On → ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) |
| 72 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) → ( 𝑦 ∈ 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) |
| 73 |
71 72
|
syl |
⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) |
| 74 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ On ↔ 𝑋 ∈ On ) ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝑦 = 𝑌 ∧ 𝑥 = 𝑋 ) → ( 𝑥 ∈ On ↔ 𝑋 ∈ On ) ) |
| 76 |
|
eleq12 |
⊢ ( ( 𝑦 = 𝑌 ∧ 𝑥 = 𝑋 ) → ( 𝑦 ∈ 𝑥 ↔ 𝑌 ∈ 𝑋 ) ) |
| 77 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝑦 = 𝑌 ∧ 𝑥 = 𝑋 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ) |
| 79 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) |
| 80 |
79
|
adantl |
⊢ ( ( 𝑦 = 𝑌 ∧ 𝑥 = 𝑋 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) |
| 81 |
78 80
|
sseq12d |
⊢ ( ( 𝑦 = 𝑌 ∧ 𝑥 = 𝑋 ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) ) |
| 82 |
76 81
|
imbi12d |
⊢ ( ( 𝑦 = 𝑌 ∧ 𝑥 = 𝑋 ) → ( ( 𝑦 ∈ 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ↔ ( 𝑌 ∈ 𝑋 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) ) ) |
| 83 |
75 82
|
imbi12d |
⊢ ( ( 𝑦 = 𝑌 ∧ 𝑥 = 𝑋 ) → ( ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) ↔ ( 𝑋 ∈ On → ( 𝑌 ∈ 𝑋 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) ) ) ) |
| 84 |
73 83
|
mpbii |
⊢ ( ( 𝑦 = 𝑌 ∧ 𝑥 = 𝑋 ) → ( 𝑋 ∈ On → ( 𝑌 ∈ 𝑋 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) ) ) |
| 85 |
84
|
ex |
⊢ ( 𝑦 = 𝑌 → ( 𝑥 = 𝑋 → ( 𝑋 ∈ On → ( 𝑌 ∈ 𝑋 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) ) ) ) |
| 86 |
85
|
vtocleg |
⊢ ( 𝑌 ∈ 𝑋 → ( 𝑥 = 𝑋 → ( 𝑋 ∈ On → ( 𝑌 ∈ 𝑋 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) ) ) ) |
| 87 |
86
|
com12 |
⊢ ( 𝑥 = 𝑋 → ( 𝑌 ∈ 𝑋 → ( 𝑋 ∈ On → ( 𝑌 ∈ 𝑋 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) ) ) ) |
| 88 |
87
|
vtocleg |
⊢ ( 𝑋 ∈ On → ( 𝑌 ∈ 𝑋 → ( 𝑋 ∈ On → ( 𝑌 ∈ 𝑋 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) ) ) ) |
| 89 |
88
|
pm2.43b |
⊢ ( 𝑌 ∈ 𝑋 → ( 𝑋 ∈ On → ( 𝑌 ∈ 𝑋 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) ) ) |
| 90 |
89
|
pm2.43b |
⊢ ( 𝑋 ∈ On → ( 𝑌 ∈ 𝑋 → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) ) |
| 91 |
90
|
imp |
⊢ ( ( 𝑋 ∈ On ∧ 𝑌 ∈ 𝑋 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑌 ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑋 ) ) |