| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rdgsucmptf.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
rdgsucmptf.2 |
⊢ Ⅎ 𝑥 𝐵 |
| 3 |
|
rdgsucmptf.3 |
⊢ Ⅎ 𝑥 𝐷 |
| 4 |
|
rdgsucmptf.4 |
⊢ 𝐹 = rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) |
| 5 |
|
rdgsucmptf.5 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝐵 ) → 𝐶 = 𝐷 ) |
| 6 |
|
rdgsuc |
⊢ ( 𝐵 ∈ On → ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ 𝐵 ) ) ) |
| 7 |
4
|
fveq1i |
⊢ ( 𝐹 ‘ suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ suc 𝐵 ) |
| 8 |
4
|
fveq1i |
⊢ ( 𝐹 ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ 𝐵 ) |
| 9 |
8
|
fveq2i |
⊢ ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ‘ 𝐵 ) ) |
| 10 |
6 7 9
|
3eqtr4g |
⊢ ( 𝐵 ∈ On → ( 𝐹 ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 11 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐵 ) ∈ V |
| 12 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ V ↦ 𝐶 ) |
| 13 |
12 1
|
nfrdg |
⊢ Ⅎ 𝑥 rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) |
| 14 |
4 13
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
| 15 |
14 2
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐵 ) |
| 16 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ 𝐶 ) = ( 𝑥 ∈ V ↦ 𝐶 ) |
| 17 |
15 3 5 16
|
fvmptf |
⊢ ( ( ( 𝐹 ‘ 𝐵 ) ∈ V ∧ 𝐷 ∈ 𝑉 ) → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝐷 ) |
| 18 |
11 17
|
mpan |
⊢ ( 𝐷 ∈ 𝑉 → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝐷 ) |
| 19 |
10 18
|
sylan9eq |
⊢ ( ( 𝐵 ∈ On ∧ 𝐷 ∈ 𝑉 ) → ( 𝐹 ‘ suc 𝐵 ) = 𝐷 ) |