Description: Right-division. (Contributed by BJ, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ldiv.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| ldiv.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| ldiv.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| rdiv.an0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| Assertion | rdiv | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶 ↔ 𝐵 = ( 𝐶 / 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldiv.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | ldiv.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | ldiv.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | rdiv.an0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 5 | 1 2 | mulcomd | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 6 | 5 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶 ↔ ( 𝐵 · 𝐴 ) = 𝐶 ) ) |
| 7 | 2 1 3 4 | ldiv | ⊢ ( 𝜑 → ( ( 𝐵 · 𝐴 ) = 𝐶 ↔ 𝐵 = ( 𝐶 / 𝐴 ) ) ) |
| 8 | 6 7 | bitrd | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶 ↔ 𝐵 = ( 𝐶 / 𝐴 ) ) ) |