Metamath Proof Explorer


Theorem rdiv

Description: Right-division. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses ldiv.a ( 𝜑𝐴 ∈ ℂ )
ldiv.b ( 𝜑𝐵 ∈ ℂ )
ldiv.c ( 𝜑𝐶 ∈ ℂ )
rdiv.an0 ( 𝜑𝐴 ≠ 0 )
Assertion rdiv ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶𝐵 = ( 𝐶 / 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ldiv.a ( 𝜑𝐴 ∈ ℂ )
2 ldiv.b ( 𝜑𝐵 ∈ ℂ )
3 ldiv.c ( 𝜑𝐶 ∈ ℂ )
4 rdiv.an0 ( 𝜑𝐴 ≠ 0 )
5 1 2 mulcomd ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
6 5 eqeq1d ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶 ↔ ( 𝐵 · 𝐴 ) = 𝐶 ) )
7 2 1 3 4 ldiv ( 𝜑 → ( ( 𝐵 · 𝐴 ) = 𝐶𝐵 = ( 𝐶 / 𝐴 ) ) )
8 6 7 bitrd ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶𝐵 = ( 𝐶 / 𝐴 ) ) )