Metamath Proof Explorer


Theorem re0g

Description: The neutral element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion re0g 0 = ( 0g ‘ ℝfld )

Proof

Step Hyp Ref Expression
1 cncrng fld ∈ CRing
2 crngring ( ℂfld ∈ CRing → ℂfld ∈ Ring )
3 ringmnd ( ℂfld ∈ Ring → ℂfld ∈ Mnd )
4 1 2 3 mp2b fld ∈ Mnd
5 0re 0 ∈ ℝ
6 ax-resscn ℝ ⊆ ℂ
7 df-refld fld = ( ℂflds ℝ )
8 cnfldbas ℂ = ( Base ‘ ℂfld )
9 cnfld0 0 = ( 0g ‘ ℂfld )
10 7 8 9 ress0g ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ ) → 0 = ( 0g ‘ ℝfld ) )
11 4 5 6 10 mp3an 0 = ( 0g ‘ ℝfld )